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SOLUTION OF AN INITIAL-VALUE PROBLEM
IN LINEAR TRANSPORT THEORY: MONOENERGETIC NEUTRONS
IN A SLAB WITH INFINITE REFLECTORS*

By Perry A. Newman and Robert L. Bowden™*
Langley Research Center

SUMMARY

The solution of an initial-value problem in linear transport theory is obtained by
using the normal-mode expansion technique of Case. The problem is that of mono-
energetic neutrons migrating in a thin slab surrounded by infinitely thick reflectors and
the scattering is taken to be isotropic. The results obtained indicate that the reflector
may give rise to a branch-~cut integral term typical of a semi- infinite medium whereas
the central slab may contribute a summation over discrete residue terms. Exact
expressions are obtained for these discrete time eigenvalues, and numerical results
showing the behavior of real time eigenvalues as a function of the material properties of
the slab and reflecior are presented. These eigenvalues are finite in number and may
disappear into the branch cut or continuum as the material properties are varied; such
disappearing eigenvalues correspond to exponentially time-decaying modes. The two
largest eigenvalues can be compared with critical dimensions of slabs and spheres, and
the numerical values are shown to agree with the criticality resulis of others. In the
limit of purely absorbing reflectors or a bare slab, the present solution has the same
properties as have been previously reported by others who used the approach of Lehner
and Wing.

INTRODUCTION
Linearized transport equations are encountered in a number of different areas such

as neutron diffusion, radiative transfer, sound propagation, and plasma theory, and the
extent to which they correspond to reality varies from problem to problem even within a

*The material presented herein was a thesis entitled "Time Dependent Mono-
energetic Neutron Transport in a Finite Slab With Infinite Reflectors' submitted in partial
fulfillment of the requirements for the degree of Doctor of Philosophy in Physics, Virginia
Polytechnic Institute, Blacksburg, Virginia, December 1969 by Perry A. Newman.

**Associate Professor, Virginia Polytechnic Institute and State University.



given area. Sincethere are some problems where the approximations required for
linearization are not unduly severe from a physical point of view, a substantial effort to
develop methods for solving such equations has been made. However, analytical solu-
tions have been obtained for only a small class of highly idealized problems and few of
these solutions have been for the time-dependent situation. Therefore, it might be
expected that any new time-dependent result should provide additional insight into the
general character of such solutions. In any case, analytical solutions provide a set of
check cases for comparison of the approximate methods (see, for example, refs. 1 and 2)
which are used in practical applications. The present idealized neutron transport prob-
lem, being somewhat more complicated than those considered previously, gives such new
results. In addition, the procedure used to obtain the present solution is generally appli-
cable to other time-dependent problems in linear transport theory and is therefore of
interest in its own right.

The basic assumptions customarily made in neutron transport theory (see, for
example, refs. 1, 2, and 3) have been summarized by Wigner (ref. 4). Since the conven-
tional derivations of the governing transport equation are based mainly on plausibility
arguments, Osborn and Yip (ref. 5) have reexamined the situation starting from a micro-
scopic point of view using quantum mechanics. * They conclude that they are only par-
tially successful in justifying the conventional neutron transport equation because a num-
ber of required approximations are merely stated and not analyzed or evaluated; however,
their approach '"brings many aspects of the neufron problem into contact with other micro-
scopic transport theories.'"" For the present problem, the additional restrictions to mono-
energetic (called one-group or constant cross-section approximation in ref. 1) neutrons,
plane geometry, and isotropic scattering in the laboratory system are made. (See refs. 1
to 4.) It is pointed out in references 1 and 2 that even though the monoenergetic approxi-
mation is rather severe from a physical point of view and is made primarily in order to
obtain analytical solutions which usually cannot be obtained for the general case, it forms
the basis of the more physical multigroup approximations. Under these restrictions,
the solution of the initial-value monoenergetic neutron-transport equation for a one-
dimensional slab of finite thickness surrounded by infinitely thick reflectors of a different
material is obtained in this report.

One mathematically rigorous approach which has been used to treat such problems
is a spectral analysis. Lehner and Wing (refs. 6 and 7) used this approach to solve the
initial value, monoenergetic neutron-transport problem for a bare slab where the

*Osborn and Yip (ref. 5) give four reasons for using a quantum mechanical treat-
ment: (1) a formalism for describing the creation and destruction of particles exists,
(2) the neutron-nuclear interactions are truly quantum phenomena, (3) the interpretation
of an observable density in phase space, and (4) other peculiarly quantum effects such as
spin and associated statistics.
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scattering is isotropic. Lehner (ref. 8) considered a slab of finite thickness surrounded
by a purely absorbing medium which had the same total macroscopic cross section as the
slab. Very recently Hintz (ref. 9) has generalized this problem by allowing the purely
absorbing medium to have any cross section. Mika (ref. 10) has studied the initial-value
problem for monoenergetic neutrons in a nonuniform slab surrounded by a vacuum but did
not obtain results as complete as those of Lehner and Wing (refs. 6 and 7). In particular,
theorems concerning the reality and number of discrete time eigenvalues were not
established.

Another approach which has been used to solve a few time-dependent, monoenergetic
neutron-transport problems in plane geometry is the normal-mode expansion technique of
Case. (See refs. 2 and 11.) This method was used by Bowden and Williams (refs. 12
and 13) to analyze the problem which had been treated by Lehner and Wing (refs. 6 and 7).
A second application of this technique was made by KuS€er and Zweifel (ref. 14) to the
time-dependent, one-speed albedo problem for a semi-infinite medium. Finally, Erdmann
and Lurie (refs. 15 and 16) have also utilized this approach in a two-media time-dependent
problem, the time decay of a plane isotropic burst of monoenergetic neutrons introduced
at the interface of two dissimilar semi-infinite media. In all these time-dependent solu-
tions, contributions due to various parts of the spectrum of the transport operator have
been indicated by suitably deforming the integration contour of the inverse Laplace
transformation. In view of these successful applications of Case's technique, in particu-
lar references 15 and 16, this technique has been chosen to analyze the present problem.
In this problem, one would expect to find discrete time eigenvalues (time constants) and
obtain some insight corcerning their behavior as a function of material properties. Since
the reflectors can scatter as well as absorb neutrons, the solutions for the bare slab and
slab surrounded by purely absorbing media are included and it is shown that the present
solution agrees with such solutions (refs. 6 to 9) for these special cases. Some pre-
liminary results of the present work were given in reference 17 and a summary of the
present results is given in reference 18.

SYMBOLS
A nondimensional slab half-thickness (see eq. (118))
Amsam,bm expansion coefficients in Case's normal-mode expansion for medium m
(see eq. (29))
Ane®my definite parity expansion coefficients (see eq. (32))
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C(

slab half-thickness

expansion coefficients for solution of associated eigenvalue problem
(see eq. (76))

contour in z'-plane (see fig. 3)
contours in s-plane (see figs. 2 and 4)

expansion coefficients in full-range normal-mode expansion of initial
distribution in medium m (see eq. (47))

contour in s-plane (see fig. 4)

mean number of secondary neuirons per collision in medium m
expansion coefficients defined by equations (50)

integrations over initial distribution f(x,1) given by equation (46)

initial neutron angular flux, generally referred to as the initial
distribution

definite parity parts of initial distribution in medium m (see eq. (16))
solution of equation (42)

given by equation (80)

imaginary and real parts

inhomogeneous terms given by equations (55) and (57)

inhomogeneous terms given by equations (56) and (58)

given by equation (62)

integrations over initial distribution f(x,u) defined by equation (67)
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lower limits given by equation (68)

integrations over initial distribution f(x,1t) given by equations (74)
and (75)

given by equation (80)

denotes that Cauchy principal value is to be taken upon integration
denote regions in s-plane (see figs. 2 and 4)

complex variable of Laplace transformation (see eq. (6))

denote values of s for which associated eigenvalue problem has
nontrivial solutions

real time multiplied by constant neutron speed

Case's X-functions given by equations (59) to (61), respectively
geometric coordinate perpendicular to slab faces (see fig. 1)
complex variable

defined in equation (28)

given by equation (89)

given by equation (90)

associated with inverse Laplace transformation (see eq. (7))
defined by equation (30)

Dirac delta function

given by equation (118)
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UR, UD

denote values of ¢ for which associated eigenvalue problem has non-
trivial solutions

¢, with largest real part
defined by equation (25)
direction cosine (see fig. 1)

introduced as complex separation parameter in equation (22) but used
thereafter as real, z being used to denote complex values

values of z for which &, (z,s) =0
total macroscopic cross section for medium m

given by equation (118)

Oppip = Min (01,02)

&

qDITIZI

qoil/on,l

W

Yy

Yms

Ymes Ympz

given by equation (110)

continuum mode in Case's method (see eq. (24))
discrete mode in Case's method (see eq. (26))
neutron angular flux

definite parity parts of Laplace transform of neutron angular flux,
generally referred to as transformed solution

Y, in medium m (see eq. (17))
parts of ¥, (see eq. (31))
an elementary solution (see eq. (22))

solution of associated eigenvalue problem



Q dispersion function (given by eq. (27))

m
Qm given by equation (49)

Subscripts:

c complimentary solution

e,i regions exterior and interior to a curve

m physical medium, 1 for reflector and 2 for slab

n eigenvalue, O for the one with largest real part

p particular solution

u solution due to part of initial distribution which has not been scattered,

that is, uncollided

1% associated with continuum modes

+ definite parity, + for even and - for odd

Superscript:

+ limiting values of a function on ifs branch cut as argument approaches

cut from upper (+) and lower (-) half-planes.
A bar over a symbol denotes the associated eigenvalue problem quantity.
PROBLEM DEFINITION

Basic Equations

Consider a slab of material which scatters neutrons isotropically (in the laboratory
system), extends from x =-a to x = a, and is characterized by a total macroscopic
cross section 09 and a mean number of secondary neutrons per collision Cog. This
uniform slab is surrounded by uniform infinitely thick reflectors of another material
characterized by the nuclear properties oy and cq. (See fig. 1.) For isotropic
scattering of monoenergetic neutrons in a sourceless medium with plane geometry, the



cv. O Cq, O
17 coyy Op v
]
cosiT u
\ x
-a 0 a
1
Reflector Slab Reflector

Figure 1.- Geometry of problem.

neutron angular flux ¥(x,u,t) satisfies the equation (see refs. 1, 2, and 3 for a complete
list of the approximations and assumptions):

e(x) ox) (L , :
cR e f_l W, t) du (1)

9 0
Tt u \I'(r;,u,t) + o) U, m,t) =
X

ot

where t is the real time multiplied by the constant neutron speed, x and u are
shown in figure 1, and o(x) and c(x) are given by

01,¢1 (lxl > a)
0(x),c(x) = (2)
09:C (x| <2)

Since multiplying media are not of infinite extent, cq{ has been taken to be less than
unity. Therefore, equation (1) is to be solved subject to the boundary conditions

lim ¥(x,u,t) = 0 (1x] = =) (3)
and the continuity conditions

U(ta+,u,t) = U(xa-,u,t) (4)



given the initial condition
W(x,1,0) = £(x,u) (5)

which is assumed to satisfy equation (3) and be extendable without poles or branch cuts in
the finite p-plane except perhaps for a discontinuity across the imaginary axis. When
the material properties of the reflectors are taken to be those of a vacuum, this problem
reduces to that of references 6 and 7 whereas for purely absorbing medium, it reduces to
that considered in references 8 and 9. When o(x) is constant and c(x) =1 (that is,
neutrons are conserved) equation (1) is the one-dimensional Boltzmann equation for the
Lorentz model of kinetic theory (ref, 19).

The general procedure used here to solve the mathematical problem presented in
equations (1) to (5) consists of the following steps:

(1) Remove the t-dependence with a Laplace transformation
(2) Solve the transformed equation by applying Case's technique

(3) Determine the analytic properties of this transformed solution in some right-
half s-plane

(4) Recover the t-dependence and simplify by suitably deforming the integration
path of the inverse transformation

(5) Calculate real discrete time eigenvalues as a function of material properties if
and when they exist.

Since many details are involved in performing these few steps, a brief synopsis is
given. Step (1) is easy and the transformed equation and boundary conditions are given by
equations (8) to (10). Step (2) is accomplished by construction of a solution from Case's
elementary solutions, or normal modes. Since the geometrical symmetry aids in this
construction, symmetry properties are introduced immediately after the time removal.
The elementary solutions of Case are given by equations (24) to (28). For details con-
cerning these solutions and their completeness and orthogonality properties, the reader
is referred to references 2, 11 to 16, and 20. Appendixes A and C summarize the
important results taken from these references which are required in this report. Con-
struction of the transformed solution is done in the section so titled and a few details are
given in appendixes B and D. Equations (50) to (58) give the expansion coefficients of the
transformed solution implicitly. Extension of these equations to the complex plane is
presented in appendix E. Since the solution valid for all regions of the transform plane
is needed for step (3), it is obtained in the same section and is given by equations (70) to
(73). Step (3) is performed in the section ""Properties of Transformed Solution" and
many of the details are given in appendixes F, G, and H. In particular, one must examine

9



where the associated eigenvalue problem has nontrivial solutions and show how these
solutions enter the transformed solution. Details for step (4) are found in the section
"Recovery of Time-Dependent Solution' and appendix I. The previously cited results
(refs. 12 to 16) lead one to expect that the reflectors should contribute continuous-
spectrum type terms typical of a semi-infinite medium whereas the central slab should
give rise to some point-spectrum type terms and their corresponding discrete time
eigenvalues. The solution ¥(x,u,t) is given by equation (114). Step (5), the calculation
of real time eigenvalues, is outlined rather explicitly in appendix J and the numerical
results are presented and discussed in the section '"Calculation of Time Eigenvalues."”
The report is concluded with a short section showing how for special values of the nuclear
properties the present solution reduces to those obtained previously by others (refs. 6

to 9) who used a different method.

Time Removal

If one takes the Laplace transformation of ¥(x,u,t) as

(X, 1,8) = gooo e St (x,pu,t) dt (6)

then the inverse transformation required to recover the t-dependence is

1

V+ico
‘I’(X;H,t) = 2_1'71' S‘ . eSt W(X,U',S) ds (7)
¥Y-leo

where y is to the right of all singularities and branch cuts of YAx,u,s) in the trans-
form plane (s-plane). From previously cited work of others, it is expected that the path
of integration in equation (7) can be deformed to indicate more precisely the character
of ¥(x,u,t). When the transformation of equation (6) is applied to equation (1), integra-
tion by parts is performed in the usual manner, and use of the initial condition (5) is
made, the following expression is obtained:

1
9
15 WX, 11,8) + [S + U(X)]W(x,u,S) =C—(Xlz—5(—}9 g . Ui, p',s) du' + £(x,u) (8)
Equations (3) and (4) become under the same transformation

lim W(x,1,8) = 0 (1x| = =) (9)

10



and

Y(za+,u,s) = Y(za-,u,s) (10)

Symmetry Considerations

Before applying Case's technique to solve equation (8) subject to conditions (9)
and (10), it is useful to examine some symmetry properties of the transformed solution
which follow directly from the governing equations. In references 12 and 13, these ideas
were introduced at a later step, but here they aid in the construction of the solution. An
arbitrary function of two variables g(x,1) can be written as the sum of its even and odd
parts, namely, g,(x,u) and g_(x,u). They are given, of course, by

1
g, (5,) = 5 [80%,1) + g(-x,-1)] (11)
and have the property
g.(-x,-p) = g, (%,u) (12)

Since c(x) and o(x) are even functions of X, it is easily shown from equation (8) that
the even and odd parts of (x,i.,s) obey the equation

uaixwi(X,u,S) + E + G(X)]tl/i(X,u,S) = E(X—)Zﬂx—) g_ll Y x,ut,s) du' + (k) (13)
The boundary conditions for ¥, corresponding to equations (9) and (10) are written as

lim ¥, (x,1,8) =0 (1x] ~ =) (14)
and

Wi(a*',lf-,s) = 1l/:i:(a'_’“',s) (15)

where the + subscripts denote definite parity parts of a function, that is, even and odd.
(See egs. (11) and (12).) Equations (13) to (15) indicate the following:

(1) All solutions of the homogeneous equation associated with equation (13) can be
made to have a definite parity.

(2) The boundary conditions preserve the parity.

11



(3) The definite parity parts of an initial distribution excite inhomogeneous solu-
tions of corresponding definite parity.

Therefore, this problem can be separated into two problems, one for {_, the other
for _, and the results can be combined at any stage of the calculation. The functions
f.(x,n#) and Y, (x,u,8) are broken up as

f ( )IJ') 'X, >a
fi(X,M) = 1% ( ) (16)
f9+(x, 1) (Ix] < a)
and
W00, 1,8) = Viaboit) (> 2) (17)
lei(X,#,S) (lxl < a')

so that equations (13) to (15) become

Cry O (1
B Vi G, 1,8) + (8 + Oy W (5, 1,8) = 220 § | Yma@R,S) dut v 6o (18)

ox 2

where throughout the subscript m =1 denotes medium 1 and m =2 denotes medium 2,
lim ¥y, (x,,8) =0 (IXI - °°) (19)
and
V1.(a,1,8) = ¥y, (a,u,s) (20)
The notation g, ,(a,u) means the limit of g, (x,n) as x —~a from medium m.

Elementary Solutions

Solutions of equations (18) are constructed from Case's elementary solutions which
are denoted here as Wmv(X,U-:S)- These elementary solutions are solutions of the homo-
geneous equation corresponding to equation (18); that is,

2 L . '5) du’ (21)
I“L&d/my(xyu-;s) + (S + O'm)l,l/my(X,[J-,S) = Ecmo-m S‘—]_ WmV(X,li ;S) 193

in the form

Vo 5 1,8) = @y (i) e Hom)E/V (22)

12



where v is a complex parameter introduced in this separation of variables and
¢ (#,8) is normalized as

1
g . Prnyit,8) du =8 + 0 (23)

These solutions have been investigated in references 12 to 16 and many of their results
are given in appendix A and are used herein. They show that the values of v for which
solutions ¢, ,(u,s) can be found are v real (-1 =v £1) and for some region of the
s-plane v =z1vg,,. For -1 =v =1, the solutions are

Panp(t8) = 5 O VP L 10 (v,9) 6(v - 1) (24)

V- i

where P denotes that the Cauchy principal value is to be taken upon integration,
6(v - ) is the Dirac delta function, and A, (v,s) is determined from the normalization
as

An(¥,8) =8 + 0y - oV tanh~1 » (25)

These are called the continuum modes and exist for all values of s. There are two
discrete solutions

CmOm¥
s)=l m°“m*“0m

26
Pavy, (4:8) =3 T (26)
at v ==, provided that the function £,(z,s)
.11
2 (2,8) =5 + 0y - €1, 02 tanh 1 = 27

of two complex variables s and z vanishes at the two points z = ivom(s). This con-
dition occurs when s lies inside the curve C,, (s € S, see fig. 2) defined by (see
refs. 12 and 13)

s§+0
m : nt
Cipn =(=—Fm—=0a'+ip

, 26! _ 2Bl
Cmom o' == tanh™! (“> (28)

T

Note that vg,, is an analytic function of s for se S.; except for a branch cut on the
real s-axis between -0y, and -0y,(1 - cyy) andthat +vp,, denotes that zero of
Qpy(z,s) for which Re(vom) >0 when Re(s)> - oy (1 - cm). The important result is
that the general solution of equation (21) can be expressed as the linear combination

13



incmcm/Z

Branch cut of vom(s)
~vvv¢\\¥_
-om(l - cm)

Re(s)

\— _incmcrr/z

Figure 2.- Regions in a single-medium s-plane. Location of TIm(s) axis
depends on whether cp 2 1.

1
Vi X, ,8) = l}mWVOm(x,u,S) + bmw_VOm(x,u,S)] O (s) + g_l A (V) Y px,u,s) dv o (29)
where 6,,(s) is defined as

1 (S € Sml)

(30)
(s € Sme)

o, (s) B

and the s-dependence of the expansion coefficients has not been determined. Note that
the present notation is slightly different than that used by other authors.

CONSTRUCTION OF TRANSFORMED SOLUTION
Solutions of equation (18) are now obtained by constructing even and odd particular

solutions ‘Pmp L1,
equations ¢ . j:(x, &,S) so that conditions (19) and (20) can be satisfied; that is,

s) and adding to them solutions of the corresponding homogeneous

Ymael,1,8) = ¥ o, 061,8) + Y (X, 1,8) (m =1,2) (31)

14



The functions ¥,., and wmp 4 are constructed from Case's elementary solutions
z,l/my(x, u,s). One must select the expansion coefficients in a general expansion, such as

equation (29), so that the given boundary conditions are satisfied.

Explicit Form of Ymes

The solution in the form of equation (29) does not have definite parity. However,
for a medium which is connected and symmetric about x =0 (such as the slab), even
and odd solutions Y9, can be written as

‘PzCi(X)I“L)S) = agi[WVOZ(X,M,S) * lp_yoz(xsuysﬂGZ(s)
1
+ §0 B[, 00,,8) = V(G5 v (32)

where the expansion coefficients have been redefined as

1
ags = 5(2g  by)
(33)
1
Ag, (V) = EEXz(v) + Az(-vﬂ
Note that the properties
ltl’iyom(-xy —IU‘JS) = lJD'_l—_yorn(X’nu'zs)
(34)

llbm(iy)(-xy -IJ',S) = ‘l/m(;_-y)(X, :LL,S)

have been used.

For a medium which extends to infinity in the x-direction (such as the reflectors),
the boundary conditions (9) require that

by =A1(-1)=0 0=vs1 if x =+ (35a)
or

a1 =AM =0 0s=sv=s1l if X = -x) (35b)

15



for the expansion coefficients in equation (29) when Re(s) > -07. Thus, in the reflectors,
the solution has the form

0
bivy (oms) 619) + A1) ¥y boms) @ (< -a)
Y1(x,1,8) = ; (36)
21 Wy Coo8) 6160 + | A0) ¥y boms v (x>

for Re(s) > -07. The continuity conditions (10) and the parity of the solutions y¥y., are
used next to relate the primed and unprimed coefficients in equation (36). One finds that
an even solution inside the slab requires

a1’ =by
(37a)
A'(W) = Aq(-v) 0=sv=s1)
whereas an odd solution inside the slab requires
ay’ = -by
(37p)
Al'(v) =-Aq(-v) 0=v=1)
In view of equations (37a) and (37b), one defines, respectively,
a1+ =by
(38a)
A (-v) = A(-Y) O0=vs1)
and
ai- = bl
(38Db)
Ay (-v) = A1(-v) 0=vs=s1)

In terms of these coefficients, ., can be written from equation (36) as

16



1
21y B0 01(9) + | AL Uy (Lyloiss) B <)
%Ulci(X,N«,S) = 1 (39)
*213¥y , (5,1,8) 01(s) & 50 Aq,(-v) Y1yx,0,8) dv (x > a)

for Re(s) > -0y.

Explicit Form of me +

The definite parity particular solutions ¢

mp+ are constructed from two particular

solutions ¢/mp as
1
ll/mpi(X,#,S) = EEbmp(X,uys) + wmp('xfﬁ’-,s)] (40)

The solutions me are obtained in a conventional way by integration of a Green's func-
tion g,, for medium m over all the medium; that is, as

1Jl/rnp(xnu"s) =§ gm(xyu';XO) dXO (41)

Medium m

The function g, satisfies the equation:

1
Cm©: f '
= §-1 B (X, ' 5%0) At

u:—xgm(x,u;xo) + (5 + o)y, (%, 15%g) =

+ 6% - 0) I (%0,) (42)

This equation is seen to be the homogeneous equation corresponding to equation (18) for
X # Xg. When one integrates over all xg in medium m, it is seen that equation (18) is
obtained. Note that g, is not exactly what is customarily called the Green's function,
since §(x - Xp) has been weighted with fm(xo,p.). Upon integrating equation (42) on x
from xg -€ to xp+¢€ andtaking the limit ¢ — 0, one obtains the jump condition

f (X(),LL)

m (43)

Em (X0 K3%0) - 8m(Xo->H:%g) =

In appendix B, g, is constructed from Case's elementary solutions and, as a result, the
explicit forms of ‘I’.?.p;t and I,Ulpi can be written as
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szi(X;U':S) = [in(X)VOZ’S) wlloz(xiu;s) * in(-xy VOZ:S) w_yoz(xyli)s:l 62(5)

1
+ S\O in(X,V,S) IPZV(X:U"S) dv

1
* S‘O in(-X,V,S) Wz(_y)(X,U',S) dv (44)

’J/lpi(x,ﬂ,s) = {Fli(x,yol,S) lpyOl(X,LL,S)
+ l:Fld:(X’—VOI’S) - ﬁﬂ:("a:VOLSE]W-yOl(X,M,S} 61(8)
1
+ S\O Fi1,.&,7,8) 'J/ly(x,;.t,s) dv

1 ~
+ SO [Fli(X)—V’s) - Fi(—a: V,S)] Wl(_y)(X,U-,S) dv (X < _a) (45&)

for Re(s) > -0y, and
lplpi(X,li,S) = {il:_fi(—a’)v()l)s> + Flj:(—x;-VO]_’S):]\I/VO:I(XJAU')S)

1.
+ \Sﬂo ["F:h(_a; V,S) + Fli(—x"‘l/,s)] l!/ly(x,‘u',s) dy

1
N go Fy,(-%,0,8) ¥q(_y)(%,12,8) dv (x >a) (45b)

for Re(s) > -0{, where

~ 3N
Fi(—a:wys) = F]_i(_a;—wys) ¥ Fli('a':wys)

) e(s+02)x0/w %,

X
Fy, (x,w,s) = S Co_ (xn,w
2+ -a Zi( 0 (46)

w
(5T %o/ axq

Fi.(x,0,8) = Sio Cli(xo,w) )

18



where w = 14 and v, -1=v=1. Herethe C,,, are full-range expansion coefficients*
of the function £ . (x,u)/1 and are given by

1
1
ChmilX0,?) = - 5 fn+(XooH) Pmp(k,s) du
mi( ) VQH:-(V,S) Q, (v,8) V-1 m;t(O ) my
and if s e Sy,
1 N
Cm.—t(XO:VOm) = 2 ; fm;t(XO,U-) Py, (1) d
cmomVOn% Qm(”Om’S) -1 Om
(47)
Cons0r20m) 2 sl 2200, (49
m+{X0>"Y0m) = ‘y Im(XosH) P-yy,, (H,8) du
CmUmVOn'%Q;n(‘VOm,S) -1 Om
/
Throughout, the + and - superscripts are used to denote the limiting values of a func-

tion on its branch cut as the argument approaches the cut from the upper (+) and lower (-)
half-planes. The function §,,(z,s) of equation (27) has a branch cut along the real
z-axis (-1,1) where its limiting values are given by

17TCmO'mV

Qn:lt(v,s) = Ay (v,8) = 5 (-1=v=s1) (48)
The functions & (z,s) are defined by
om(z,8) = Lo (z,9) (49)
m< - dZ m\

Equations for Expansion Coefficients

Solutions in medium 1, |x| > a, have been constructed so that the boundary condi-
tion (19) is satisfied. Application of the continuity condition (20) permits the determina-
tion of the unknown expansion coefficients of "L’m et
that is, if one substitutes x =a in equation (31), applies the continuity condition (20),
and uses the explicit forms of Yy given by equations (32) and (39), a two-media full-

range expansion involving the ¢p,,, Wwhich contains unknown coefficients ap,, and A,

which are implicit in equation (31);

*Note that the parity of these coefficients is opposite that indicated by the + sub-
script because of the 1/u factor. Nevertheless, the solutions ‘pmp;t are easily seen to
have the indicated parity.
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is obtained. The same expansion is, of course, obtained for x = -a. This type of
expansion and its orthogonality relations are discussed in appendix C and it is shown in
appendix D that such an expansion is obtained for the present problem. Erdmann {ref. 15)
proved completeness theorems which apply in such time-dependent problems while
Kuster, McCormick, and Summerfield (ref. 20) derived orthogonality relations which are
applicable to two-media expansions which arise in time-independent problems. In
appendix C, their results are extended to obtain orthogonality relations which are valid
for all regions of the transform plane. As usual in problems involving a slab, one cannot
obtain closed-form solutions for the expansion coefficients. However, the orthogonality
relations (appendix C) can be used to obtain expressions which give the expansion coeffi-
cients implicitly; that is, the continuum coefficients Ag,(v) are given as the solutions of
Fredholm integral equations and all the other coefficients are obtained from Ao, (v). For
later convenience, however, expressions are obtained for these coefficients in the form

Eg.(v,8) = Ay, () Q5 (v,8) Q5(,s) e(s+02)a/y

(50)
- -(s+o0q)a/v
E1:(v,8) = Aq,(-V) Qf(v,s) Q1(v,s) e ( 1) /
Use of the orthogonality relations leads, after some algebra, to the following equations:
-2 s+oz)a/p.
Q9(,s) 1 e~2( Xo(-1,8)p du
k 22\ 0 s
E (V,S) =1 (V) e e v o8 (_vysﬂ E (M,S) =
2 2617 %12 9(=5) 0 0 05 (,9) Q5 (1,8) (1 + V)
-(s+09)a/v Y02 -
+ 69(s) a9, € ( 2) /P02 Xo(-voz,s) Vo3 + 7 0=vs=s1) (51)
1 ' S+09)a /v
3 €20270222 (¥02,5) 224 (5+92)2/%02
- -2(s+0q)a/u
=J9.(v02) % [15 a(=8) o (-v02,5) ' Eo, (1,8) ey Xolu,s) p du
2:(02) * |3 0y (m,9) 0(702:5)1)) F2ulo) o=l (1 + vpa)
1 ~(s+09)a/y,
+5ag;e (s+02)3/Y02 XO('V02:S> (s € SZi) (52)
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+ -
C909 Q7 (v,8) 91 (v,8) Ey,(1,9) e—2 (s+og)a/v

E]_i(V,S) = Il:t(v) * €101 9'2+(V’s) 92-(1/,5)

e-z(SWZ)a/“ Xo(-u,8) @q,(1,8) 2p du

Q‘Z-‘-(’J':S) Q’Z—(H)S) 010'11/

1
1 1
:I:E-RXOTV,S)] SO Ezi(u,s)

- (s+09)a/V Y,
+ By(s) ag, e ©+2)/¥02 Xo(-%02:5) 5 _0302 ©Osvs1) (53)

and

1 . -(s+oq)a/v
3°191%1%1 (015) 212 © EroU%or

-2(s+0q)a/u
2" Xo(-v015)| |Jo 23 (11,8) 25 (1,9) (1 - ¥1)

Y02

~rop)aor ¢
Y02 - Y01

+ d9(s) ag, e (—z/oz,s) (s € Sli) (54)

The I, and J,, terms in equations (51) to (54) which contain only integrations over
the initial distribution are therefore known functions when f£(x,it) is specified and are
given by

€101

s+01)ja/vV -
555, F12(-259) ol 13/ 2 (v,5) 25 (v,5)

In.(v) =

2p(e,s) ! -
£ [%kgi(oo,:)xo(-u,j Bo Fa.(a,1,8) e Eroz)af Xo('“’s)%

+ 09(s) ng(a, yoz,s) e‘(S+02)a/V02 %, (—v02,s) i ,,203 I;I
0

e ol b ) oEODYH P9 2 O
FQo(w,8) [J)g T 1E T Xo(-1,5) cg0gv

(s+01)a/v01 1 Vo1
XO(—VOI,sj v -1y

+ 61(s) Fli_(—a,VOl,s) e 1:, 0=v=1) (55
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1, 9(=8)
JZi(VOZ) [2 1 (=,s)

+ %in(a, v2,S) e

X (-025) J B Py (ans) @ B0 x (9 LI

LL+V02

- (s+02)a/v02 XO (-Vozysil

Ql(oo s) |l (s+o1)a/u wdu
Q,z(oo S) BO F]_:!:(—a’l’l"s) e XO('N—,S) (IrJ« ~ VOZ)
v
+ 61(s) Fy,(-a,p1,8) e(s+01)a/V01 % (—v01,5)0(1V01 . Vozﬂ (s € Sgi) (56)

010'1 2

ITROE 1[Fli( -a,v,s) (s+01)a/v 272 .(a,v,8) e_(s+02)a/VJ91+(v,s) Q[ (v,s)

s

s+09)af d
Fo.(a,u,s) e ~(s+02) / Xo(-1,8) 91,1, )05015

+ 09(s) in(a, Y025 ) " (5+92)3/v02 Xo( Y02> S) ‘02 ]

‘Ql(ooxs) 1
Y A F _
+ [O lzt(

‘QZ (OO: S)

+ 51(s) Fli(-a,v()l,s

and

J1.(v01) = ¥F1. (-2 Y01, ) :

1 1
* [jikXoi—VOI,s:lj

(s+01)a/p. podu
Xo(-u,8) (1 +v)

a,i,s) e

(s+01)a v Y01 . <
)e / o1 Xo(-v01,8) (VOI + v) O=v=D 67

S+0q1a/V,
c10170191 (v01,8) e ~Erona/on

1 -(s+o )3«/# d
Fo,(a,i,s) e © 21 Xg(-u,s) £
l;g‘o 2+ 0 L= V1

+ 62(s) Fpu(a,v02,5) e-(SWZ)a/ 02 Xo(*”oz,s)——ygz—lJ

Ql( ,S)
Qz(°° s)

+ %Fli(—a, VOl,s)

22

(s+01)a/p. w du

1
[0 Fis(-a,u,s) e Xo(-u,8) (1 + vp1)

(s+01)a/v01 1
e N ETIC (s € Sli) (58)



In these equations, the Xp, functions which were shown in reference 14 to be continuous
across the curves C,, inthe s-plane (see appendix A and fig. 2) have been used. For
two material media, one takes the ratio of these single-medium Xg,, functions

_ XOZ(Z:S)
Xo(Z,S) = m (59)
where
(VOm - z)Xm(z,s) (s € Smi)
Xom(Z,S) = (60)
(1 - 2)X(z,s) (s € Sme)
and
1 Q.5 (v,s)
X (2,s) = -1——1_-—z exp 5% §0 log, [QE(V,S):I Vd_VZ (61)

For Re(z) <0, Xg(z,s) given by equation (59) is a nonvanishing analytic function of z
and s provided s¢ <—0m, -0 (1 - cm)), the branch cut of vy (s), m=1,2. The
quantity

k= s(clol - 020'2) + 0'10'2(01 - Cz) (62)

is related to the difference between medium 1 and medium 2 continuum solutions; several
equivalent expressions for k are given in appendix C.

Equations (50) to (58) determine the expansion coefficients A,,, and a,, as
follows. Recall that the inhomogeneous terms I, and J,,, are known functions for a
given initial distribution £(x,it). Equation (52) is used to eliminate ag, from equa-
tion (51) and upon using equation (50), one obtains an inhomogeneous Fredholm integral
equation for the unknown coefficient Ag,. It is seen from equations (52), (53), and (54)
that the remaining unknown coefficients are given in terms of Ag, and other known
functions. However, one needs to know the analytic properties of the transformed solu-
tion Y, inthe s-plane in order to invert the Laplace transform. For part of this inves-
tigation, another form of the solution is much more convenient.

Complex Representation of i(x,;.L,s)

In equations (50), the coefficient E,,.(v,s) were introduced since they are the forms
of the normal-mode expansion coefficients which are extendable to the complex plane.
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(See ref. 21.) Thus, equations (51) to (58) can be written in a compact form valid for

Re(s) > =Opmin = ~min (01,02). A brief outline of this extension to the complex plane is
given in appendix E.

-2(s+0q)a/z’
Eg,(7,5) = Iy, (2,5) + — nz 8 Xoleo S‘ T / w6
2+\%, 21\> Cy09 Q1(w,s) 271 ' Q9(z',s) (z' + 2)
cq0 -2(s+0q)a/z
Eq,(z,s) =I1,(z,8) = 010; Eo,(z,s) e ( 2) /
By, (z',8) Xo(-2',5) e—2(s+02)a/z
- k . g 2+ 0 dz! (64)
c909Xq(-2,8) 27 Joo Q9(z',s) (z' - z)
2

29 K 2(8) Ly,(a,z',s) Xo(-z',8)
I2+(2,8) = c10 1L1i( 2,2,5) +|j2111 21 (0, Q1 (,s) Xo(-2, 5”}5‘(;1 C909829(z',8) (2' + 2) dz

Q1(,s) Lq,(-a,z',s) dz' (65)
* Qg(=,8) Jor ¢101Xp(-2',s) Q1(z",8) (z' - 2)

and

-2(s+0y) a/z c101

I1.(z,s) = ¢L1i(—a,z,s) e in(a z,S)

€202
k LZi(a’,Z"S) XO(—Z':S) .
) I:Zﬂi_Xo(-Z,S)J %S‘C' c909929(2",8) (2" - 2) dz
§21(e,s) Ly,(-a,z',s) dz'
" Q9(,s) Jor ¢101Xg(-2',8) 21(z',s) (2' + z)} (66)

The functions L, (x,z,s) which appear in equations (65) and (66) are given by

Lmi(X,Z,S) = S; (S+01n)(X—XO)/Z [—C Om 5 fmi XO: d]"L

+ 2
m H

1
1 dp 1
- é-cmO'm \S‘O fmi(XO,[.L)—ll—_—Z + 'z—fmi(XO,Z) Qm(Z,Sﬂ dXO (67)
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with
(68)

and are analytic for Re(s) > -0;,. These functions were introduced for z=v, 0 Sv =1,
as

Lm+(,v,8) = Fip 1 (%,0,8) Qr;(v,s) 2y (v,8) e—(s+om)x/y (69)

in order to extend F,,, tothe complex plane. In equations (63) to (69), z does not lie

outside the contour C' which encircles vy, as shown in figure 3. The restriction
Re(s) > -0p,i, is discussed in the next section.

Im(zt)

Branch cut of Qm(Z',S);:

-1

Re(z!)

Figure 3.~ Contour C' in z'-plane.
That equations (63) to (66) reduce to equations (51) to (58) as all contours C' are
collapsed onto the branch cut ve (0,1) dueto 9.,(z,s) (refer to fig. 3) can be seen as

follows. If se€ Sy, |:Qm(z)]_1 has a pole at z = 1y,,, Wwhose residue leads to a dis-
crete term. When se Sy o, 9p(z) does not vanish. The continuum terms are simply
those due to the integration around the branch cut.
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The solutions ¥, .. (x,1,s) and d/mpi(x,u.,s) can now be written simi-
larly as

dz|

1 B Eg.(z",s) e—(S+02)(a+x)/z'

Yoc+lX,1,8) = 27 Q2(z',8) (z' - 1)

Sﬁ Eq,(z',s) e'(S+02)(a—x)/z' J
+ dz!'

Q9(z',8) (z' + i) (1x| <a) (70)
for Re(s) > -0min,
g . (s+01)(x+a)/z"
_2_1;5 e dz’ (X < -a)
mJer Q1(z',8) ' + )
lll/le:(X,lJ',S) = —(S+0'1>(X-3.)/Z' (71)
+1 Eli(Z',S) e '
e T e@e @ -p (x > 2)
for Re(s) > -0pin,
-1 LZ:I:(X’Z':S) ' LZi('X,Z',S) 1
sz:{:(xjuys) —EE[C' QZ(Z',S) (Z’ _ l-L) dz' + cr QZ(Z',S) (Z' T IJ,) dZ:’ (’X, < a) (72)

for Re(s) > -09, and

(1 [ Lli(X,Z',S)

27 o 2q(z',s) (2" - u)

dZI

M:t(X,Z',S) 1 Ll;t('a—,z',s) e‘(s+0'1>(a—X)/Z' Ny
+§ ! Qq(z',s) (z' + 1) (x < -a)

d/lpi(x, .U':S) = (73)

1 B Lli(-a,z’,s) e—(s+01)(a+x)/z F M, (x,2',s) -

pE 29@,9 @ - )

x>a)

J Lq.,(-x,z',s
i+ 1:(%258) o,
cr Q1(z',8) (2" + )

for Re(s) > -0y.
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The functions M,(x,z,s) are also integrations over the initial distribution f{,(x,1)
and are given by

M, (x,2,s) = - g-x (s+01)(x+x0)/z [

c1‘71§ f1. (%0, 'U')[J,+z

1
d
- .;-0101 50 fli(xo,—u)ﬁff—z- + —;—fli(xo,-z) Ql(z,sﬂ dxg x>a) (74)

and

Mi(X,Z,S) = \S‘ (S+0’1>(XO-X)/Z|: 010'1 S. f].:!: Xo, ) udiLZ

- —clol S. fl:l: XQ,-K ) dp’ S+ lfli(xo,—z) Q1(z, s):l dxg (x <-a) (75)

for Re(s) >-0; and z not outside C'. Again, the discrete and continuum terms which
appear in equations (32), (39), (44), and (45) are due to the zeros and branch cuts of
©m(z,s) which appear in the integrands of equations (70) to (73).

PROPERTIES OF TRANSFORMED SOLUTION

General Properties in s~-Plane

Analytic properties of ¥,(x,u,s) as a function of s must be investigated before
the time-dependent solution ¥(x,u,t) can be recovered according to the inverse Laplace
transformation given by equation (7). To do this, the behavior of ¥, in some right-half
s-plane is required. Before looking at the details, a review of some resulis of earlier
cited work in which Case's method was used is in order. In these works, the analytic
properties of the functions of s suchas vy, $p, and the various X-functions are
given,

In the semi-infinite medium problems considered in references 14 to 16, expan-
sion coefficients could be found explicitly and this fact aided in the extraction of the
s-dependence of the transformed solutions. These solutions were found to contain the
branch cuts of Vom(S) so that the integration contour of the inverse Laplace transfor-
mation was deformed around these branch cuts. For the slab problem solved in refer-
ences 12 and 13, expansion coefficients could not be found explicitly but the theorems of
references 6 and 7 gave the analytic properties of the transformed solution in the s-plane.
In that problem, the solution does not contain the branch cut of py(s) even though vy(s)
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appears explicitly in it. Instead, there are a finite number of poles at values of s, for
example, sg,. . ., Sy, Which lie on the branch cut of Z/O(S), that is, on the real s-axis.
These poles contribute a sum of residues as the integration contour is moved to the left
of them in the s-plane. Furthermore, in these previously solved time-dependent prob-
lems, there is a real number, for example y;, such that the integration contour cannot
be deformed into the region Re(s) <y for arbitrary values of x. The present trans-
formed solution should exhibit similar properties; that is, ¥, may not be analytic for
Re(s) less than some number %7 Wwhen x is arbitrary whereas for Re(s) greater
than 7y, it should be analytic except for poles and/or branch cuts. Such singularities
probably occur where vy.,(s) has its branch cut.

First note that for arbitrary initial distributions £(x,u), ¥,(x,4,s) is not analytic
for Re(s) < -Opip. This statement is true since each of the inhomogeneous terms Ip, 4
of equations (63) and (64) contains both L;, and Loy  as can be seen from equa-
tions (65) and (66) and one of the two will not be analytic for Re(s) < -0y,ip = -min (01,02).
In particular, note that for |x| >a, ¥1,.(,u,s) never appears to be analytic for
Re(s) < -opin- However, for special cases of material properties and initial distribu-
tions, 9, (%,u,8) canbe shown to be analytic for -0y <Re(s) < -07 except perhaps for

poles.

Consider now the behavior of ¥, for Re(s) > -0,,;,. Note that the transform
plane for the present problem must be taken as a superposition of two ''single-medium"
planes, that is, one for each material medium in the problem. The expressions (32), (39),
(44), and (45) for the transformed solution were not defined for s e Cy, and outwardly
appear to be discontinuous at s e C,,. However, this is not the case. The complex
representation of E,,. given by equations (63) and (64) shows that such coefficients are
continuous across the curves C,,. Thus, it is seen from the representation of ¥,
given in equations (70) to (73) that ¢, is indeed continuous across the curves Cpy,.

The Associated Eigenvalue Problem

It is convenient to introduce at this time the solution of the associated eigenvalue
problem, that is, the solution of equation (18) subject to the boundary conditions (19) and
(20) with f,,.(x,u) = 0. Such solutions, denoted with a bar, have the form
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’

1_
Elillf_yOl(X,u,S) 61(s) + Slo Byi(-¥) ¥1(-p)X,1,8) v (x < -a)

Epy02<x,u,s> : w_yﬂz(x,u,sﬂ 53.(s)

P, 05,1,8) =¢ (76)

1
+ SIO _ﬁzi(V) [WZV(X,H,S) x Wz(_y)(X,U-,S)] dv (IX] < a')

1_
:!:B]_:tll/y()l(x’“‘ys) 61(8) * S\O B]_i('v) W]_V(X,“:S) dv (X > a)
\

where obviously Bj,, and by, can be obtained from the E,,, given by equations (63)
and (64) in the case f,,,(x,u) = 0. It will be seen later that the solution i, has poles
at those values of s for which the associated eigenvalue problem has nontrivial solu-
tions. In appendix F, it is shown that as the slab thickness becomes very large, this
eigenvalue problem has only trivial solutions for Re(s) > -09 except perhaps on the
branch cuts of vy.,(s). When the slab thickness is not large, one still expects that if the
eigenvalue problem has nontrivial solutions for Re(s) > -09, they occur only when s is
real. This statement has been proved rigorously by using the approach of Lehner and
Wing (refs. 6 and 7) for several problems which are special cases of the present problem:
the bare slab considered in references 6 and 7 and the slab surrounded by pure absorbers
considered in references 8 and 9. In all these problems, there is no scattering in the
reflector and, therefore, no branch cut of vy1(s). As already indicated, the Xg(z,s)
function contains the branch cuts due to both vgi(s) and vgg(s) and these branch cuts
lie on the real s-axis from -0y, to —cm(l - cm) and may or may not overlap depending
on the values of material properties. Note that cq{ has been taken less than unity and
this insures that the branch cut of vg1 lies entirely to the left of s =0. In previously
solved time-dependent problems, singularities of the transformed solution always occur
where the vy (s) has branch cuts. Since the analysis of appendix F indicates that for
large values of the slab half-thickness a, the singularities of y_ for Re(s) > -Omin
also occur where the VOm(s) have branch cuts, it will be assumed for all values of a
that the singularities of ¥, occur on the branch cuts of vy, (s). In any case, it is
shown that the only other singularities of Y, Re(s) > -Omin Which could occur off the
branch cuts of vg(s) are poles, whose residue could readily be added to the time-
dependent solution.
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In order to determine the behavior of ¥, on the branch cuts of vg,(s) one first
considers ¥, inthe region se Sy; N Sgi. For this region, the expansion coefficients
are given by the following equations. (See appendix G for a brief description of the man-
ner in which these equations were obtained.)

B, (u) = +k 22(5°) (va3 - #%) ha(w) [ny(vgo) , ha(02)
2 2 €1 (,s) (V012 ) No(u)fu + Voz - Vg2

g By, (1) hy(1) 7 “J ©sps1) (T7)

Blal-m) ¥ o5 iBzi(u) e 172

k QZ(C’O s) hl(li) hZ(VOZ) hz( VOZ golu(v,s)
2 Ql(°° S) Nl(u)l: - V()zi B+ 799 S‘ BZ:&:(V) hz(V)W dv (78)

and

dv

2 -
1% ZJO

+h1( v01) 13 = hZ(VOZ) + h2("”02) + (Vozz - 7 g Ba, (V) hy(v) 5
1

Xq(-w,s) o (s+og)a/w

21(,8) X1(-w,s) (s+cl)a/w
05(,5)  Ky(-,8) ©

hy(w) = (80)

N (1) = p8(1,8) Qg (1,s) )

In addition, the eigenvalue condition

__ha(oa) , hal(vp2) 5 By, () hy()

(81)
Vo1 * Y02 Y01 ~ Vo2

UV + VOl

must be satisfied. As noted in appendix G, this equation is an additional constraint on the
solutions of equation (77). Since the eigenvalue condition (81) has different limiting
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values as s approaches the branch cut of vjq(s), it is concluded that there are only
trivial solutions of the associated eigenvalue problem on the vy1(s) cut. When s
belongs to the branch cut of 1y9(s) which is not also part of the vy(s) cut, that is,
when Re (VOZ) =Im (VO 1) = 0, it appears that nontrivial solutions of the associated eigen-
value problem may exist. From Bowden's results for the bare slab (refs. 12 and 13), it
is expected that equations (77) and (81) are satisfied only at isolated points {sn}. In the
limit cg909a —~ <, these points lie on the branch cut of vy9(s), that is, the s, are real.
The 'thick-slab" eigenvalue condition is seen from equations (77) and (81) to be equa-~
tion (81) with Bg (1) =0

If material properties are such that -o09 < -0y, then part of the branch cut of
vgo(s) liesin s e Sgj N Syg. In this region however, s < -0pj, =-01 and for such

values, the solution Yu(x,u,s), |x] > a, that is —1,171:&, is not bounded as |x| - «. How-
ever, wz , may have nontrivial solutions on such a part of the branch cut of VOZ(S)'
The equation for _ﬁz + and the additional constraint for this region are (again, see
appendix G for some discussion)

B, () = o £ 220 S)( 2 )hz(“) X1(-#,5) |hy(vo2) X1(vp2:8)
26 = *201(,9) N (1) Xo1(-1,8) | 1 + Yo3 Xo1(-V02,5)

hy (-vp2) X1(vp2,s)
K - Y02 Xo1(vp2,8)

1_ Xl(-V,S) dv <, <
+ go Bpal) bW | 05u=D ()

and

dv (83)

X1 (= X -
0 =h2(y02)_1(_fﬁih (—voz)—l(y&-— 5 BZi(V ) ho(v) X1(-v,s)

X01(-702:5) X01(¥02,9) Xp1(-v,8)

It will be seen later that the zeros of equation (83) can, under some conditions, be poles
of 9, andtherefore may contribute discrete modes in ¥(x,u,t), |x| <a. For this
reason one is interested in where these zeros lie. They will be referred to as
pseudo-eigenvalues.

Relationship Between ¥, and ¥,

It is now shown how the solution of the associated eigenvalue problem ¢ 4 1scon-
tained in the mhomogeneous solution ¥, by following a procedure similar to that of
Bowden and Williams (ref. 13) In appendix H, it is shown that the original expansion
coefficients of equations (32) and (39) can be written as

Ama() = |2 + 1 F2:(2.%02,) Bmsl) + By () (842)
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and

1 —
17 [a?‘* * EFZi(a’Voz’sﬂbli *P1s (s€ 810 Sa)  (840)

where Em 4+ and 51 + are given by equations (77) to (79). The coefficients By, and
by, are given by

€191 01-09)a/V
By (V) = C—z?zFli(-a,V,S) e( ) /

2 _ 2
k $29(,s) <V02 -V )hz(v) 1 du
2 \Ql(oo,s) (VO]_Z - 1/2> Nz(y) SO BZ:!:(FL) hZ(I-L) m

du
L+ v

1 hy(vpa) _ hg(-vp2)| (1
* é’FZ:I:(a’VOZ’S)E/ +( yoz) 3 E ,,02] * fo Fp+(@,1,8) hy()

Yot - 12 205, (1,9)

1
F ‘S\O F]_i(-ayu'ys) h]_(IJ')

(85)
2 2  CoOyV
Voo ~ M 272
2% (01-09)a/v
Bli('V) F 107 BZ:I:(V) e
2(x,s) hi(v) hg (Vp2) _ hy (-vga)
o k22358 A1) )1 2(Vo2) _hal-vpg
T § Ql(oo,s) Nl(V) 2 in(a’voz’s) vV - 1}02 + 5 VOZ
1 204 (1L,5)
1 )
+ § (o) + Faylans] ) —22= au
2 2
1 vo2 - 12 4
:S‘ Fli("a.,.u,S) hl([“L) ( O]é 2) m _l;_LV
° (o2 - » )
€909 (ol-oz)a/v
F |F14(-a,0,8) - ¢107 Fy,(a,v,s) e (86)
and
xhl(_y()l)libli - Fi("a’ VOl’S):I =Pz (87)
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The coefficient Ew.zi + %in@., Voz,s):' is given by

1 _ Vp1B1s + Bax
[azi + §F2i(a,v02,sﬂ = Z;Olal;t - aZ:I:) (88)

In these equations, ay,, @94, By, and By, are

1_ d
a1, =hy (vp2) + hy(-vpg) + (Vozz - vo1 )§0 Ba+(1) By (k) % - -
- Vo1
} (89)
podu

2 2
® 'VOIJ

- 2, (g
@3, = Yoaha (02) ¥ 0zha(-v02) + (f - ¥o7) go Bo+ (1) ha(u)

b1+ = 5 F24(2.702:5) [ha(v02) ¥ hy (-+02)

1
2 Kdy
+(v02 - V012>50 [Bzi(u) +in(a,u,5ﬂ ho (1) —-————“2 3
- Vo1

1
2 2 du
® (VOI - VOZ)S‘ Fli('a’:uys) h]_(“') 5 '_"‘2
0 SRR

+ [Fli(-a, v01,s) hy (v01) + Fli(—a,—vm,s) hl(—v()lil (90a)

and

By = 3 F2u(a,702.5) voa]ha(voa) = hp(-v3)|

1
d
+ (08 - ) | [Baatt) + Fpula,ol] hylu) 2
0=" w2 - vof

1
2 d
:F(VOI - v022>5;) Fy.(-a,u,s) hy(u) HT“__‘:_Z_
- Y02

T E’OlFlﬂ:(’a’VOI’S) hl(VOI) - VO].FI:i:(-a"—VOI’S) hl('VOI)] (90b)
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In terms of these quantities, the solutions ¢, , can be written as
1 _ 1
Wzi(xgli,s) = [a‘Zi + EFZ:i:(a"VOZ’S)] IpZi(x,lJ"S) + S\O Bzi(l/) EIJZV(X’I’L’S) + WZ(-V)(X"‘L’SEI dv
1
+ S.O Ein(X,V,S) ‘,Uzy(x,ll,s) * in(—X,V,S) ll/z(_y)(x,u,s) dv
+1F V S):I:F -X,-V ‘]w,b ( )
Pl Zi(x’ 02’ Zi(x’ 02-5) Y datde

+ %IEFZ:I:(X!'VOZ’S) + in<-x,1/02,s):| z,l/_yoz(x,u.,s) (Ixl <a) (91)

and

Wli(X,H,S) = |}'2¢ + %in(a"VOZ:Sil Eli(xnu"s)
* E)ld: - Fy(-a,vp1,8) + F1i(-x,-vo1,S):l Vgq (55 148)
+ F]_i('X,VOl’S) ll/_yol(xyﬂys)
1 ~
x gO [Bli(-v) - F (-a,v,s) + Fli(-x,—v,ss_‘ V1px,1,8)

1
2§ F1amn) Yy (o) @ (x>a) (92)

The solution ¥q,(x,u,s) for x < -a has a similar form. Inthese equations,
Vs (X,1,8) are the parts of ¥, (x,i,5) which are given by equation (76). Equa-
tion (79) is written in terms of «q, as

?hl(-VOl) Bli = ali (93)
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Properties of ¥, on the Branch Cuts of vgy(s)

Consider now what happens on the branch cut of vy1(s) where yy1 = i|v01| for

+

Im(s) =0 and gy = ~i|yg;| for Im(s) =0". From these equations, it can be shown

that the quantities Bg,, Bjii, By, Bii, ®1i, @9y, Bis, and By, do not contain
the branch cut of vgi(s). Equations (93) and (87) show that by, and by, have branch
cuts due to that of vy1(s). Equation (88) indicates that a,, + %Fz i(a., Voz,S) has the
branch cut due to V01(S) unless @y, /az + Iisequalto By, //32 4+ 1n general, this state-
ment will not be true since g1, /BZ;f; depends on the arbitrary initial distribution f,(x,u)
whereas ali/azi does not. Therefore, it is concluded that both ¥, and ¥y, con-
tain the branch cut of vg1(s).

On the branch cut of ygyy(s), the quantities By,, By,, by,, By, and By, are
single valued. Since the quantities a1, and a9, of equation (89) are related above
and below the branch cut of vgg(s) by

[a'j;t]+ = j;[a]-j;l ) (94)

it follows then from equation (88) that on that part of the branch cut of vga(s) which is
not also part of the vyq(s) cut, that is, for Re(voz) = Im(v(,l) =0, one has

+
[az:t + %in(a,yoz,S)] = :tltaz:t + %in(a., V02,S):| (95)

if the denominator on the right-hand side of equation (88) does not vanish. It is seen from
equations (76) to (79) that for this same region,

[Ei(x,u,S)T = i[@i(x,u,S)]_ (96)
Hence, the product
E’z:t + %Fz:t(a" VOzysi] Ei(X,N-,S) (97)

which appears in Y, does not contain the branch cut of yyg(s). However, the denomi-
nator of ag, + %Fz j:(a., voz,s), namely vpiQ1, - @9, is equivalent to the eigenvalue con-

dition (eq. (81)). Thus, if the associated eigenvalue problem has a nontrivial solution at
s = sy, Re(s) > -0y, then, Y, has a pole there.
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The analytic properties of the transformed solution ¥, (x,u,s) may be summarized
as follows. For arbitrary initial distributions £ (x,), ¥, is not analytic to the left of
Re(s) = -0p,;, in the s-plane, whereas to the right of Re(s) = -0y, it is analytic except
for the branch cut along (‘Umin’ -01 (1 - c1)> (due to the branch cut of VOl(S)) if
Omin > 07 (1 - cl) and poles at the values of s at which the associated eigenvalue prob-
lem has nontrivial solutions ¥,. It has been assumed that for arbitrary slab thick-
nesses a, these poles, if they exist, lie on the branch cut of yyg(s) since this result is
the rigorous one obtained by others for several special cases of the present problem and
obtained herein for the case when cgo09a islarge. For special values of material prop-
erties and initial data, ,.(x,u,s) for |x|<a (th.at is, o i) may be analytic in the
region -09 < Re(s) < -01 except perhaps for poles.

RECOVERY OF TIME-DEPENDENT SOLUTION

The time-dependent solution ¥(x,u,t) is obtained from the inverse Laplace
transformation (eq. (7)) where v is to the right of all singularities of ¥(x,u,s)
in the s-plane. From the preceding analysis, it is expected that one can choose any

v > max(—ol (1 - cl), -02(1 ~ cz)>. In order to show the time dependence of the solution

¥(x,u,t) more explicitly, the inversion contour should be deformed as far as possible to
the left in the s-plane by making use of the analytic properties of Y(x,i,s) obtained in
the previous section.

Behavior of ¥, on the Contour Re(s) =y

The behavior of Y, onthe contour Re(s) =y must be examined as |s| — <.
(See fig. 4.) This contour crosses both of the curves Cy and Cg and it has been
shown that Y, is continuous across these curves. As |s] — « on such a contour,
S € S{e N S9e and it is shown in appendix I that ¢, behaves as follows:

WZ—.{;(X,M,S) - %gfa e—(s+o-2)(x—XO)/l“L &Zi(x()’ I‘L) + 0(%)} dXO

~-X

. e_(Uz'Ul) (—M—) Sﬁ-a e-(S+°1)(xy, 0) Eli(xo’u) + o(%)] dxg (98)

Ly oo

for |x| <a and p >0,
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Xn=-X

Vo (osS) = Ti_| S: e'(s+02)<_m) %zi(xo,-w,]) + 0(%)]&0

~(e-or)(3) x

- |1 S"o e-(SWI) —IQ"T> Eli(xorlm) + o(%)] dx, (99)

a

for |x|<a and pu <0,

Y1, (5,1,8) — e’("zzl)(a_:{) g ) e-(S+Uz)C(_:O) EZi(XO’I‘L) * 0@} &

- (og-o7)22 o -(s+op)
e (zu l)u. S‘_we( 1)<xu0>Efli(XO,u)+O%>]dX0

X —XO

. % S: e-(s+01)< K ) EI:I:(XO’ ) + 0@] dx, (100)

for x>a and p >0, and

Xn—X

Wy GorltyS) I—ilfl g: e'(s+01)<W) Eli(xo,-ml) + o@] dx, (101)

for x>a and u <0. Expressions similar to equations (100) and (101) are obtained
for x<-a. Itis seenthat ¥, 1is not necessarily 0 s, However, the parts which are
not can be easily inverted as follows. Define for all s the function ¥ j:(x,p.,s) as that
part of each of equations (98) to (100) which is not O(%) It is shown in appendix I that
upon making the substitution

X - Xp = pt (1 >0)
(102)
xg - ¥ =|p|t (1 <0)
Y., 1,8) can be written as
(o]
Vuabom,s) = § o5t [yubomd] (109)
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that is, the parts of ¥, which do not behave as 0(—;—) as |s| ~ <, Re(s) = v can be
inverted by inspection. The solution ¥, (x,u,t) is given by

-0ot
e 2 fg,(x-ut,u) (t <& X>
\I’u;t(X;Uv,t) = ot —(0_ _0-1)<§'ﬁ> (104)
e e 2 H 1. (x-pt, ) (t > a; X)
for |x|<a and p >0;
e 2 (it ) t< 2%
9 K- ML, “‘Ll
Ve (x,m,t) = L (090 (?ﬂ) (105)
e 1 (271K £y (x-pt, i) t>&-X
for |x|<a and pu<0;
-0+t -
(%1 £, (x-ut, 1) é; <X“ a>
-a
-0t (To-0) == _
‘I’u;t(X,H,t) =€ 2 e( 2 1)C(u )ij;(X~I‘Lt5I-L) (xu 2 <t< X:L‘ a) (106)
2a
-0+t —(0'2—0'1 (—'LI->
G 1" e ) 1. (x-pt, 1) (t>x;-a)
for x>a and x>0 and
-oqt
‘I'u:t(xxl"")t) =€ flj:(x—tu'tﬂu) (107)

for x>a and p <0. That ¥, + describes the motion of uncollided neutrons from the
initial distribution can be seen by direct substitution; that is, ¥, satisfies the equation

o o
ux u+ _

ot TH 5 ¥ o(x) ¥, =0 (108)
In the limit t — 0, note that

‘I’ui(X,U-,O) = fj:(x;“‘) (109)
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For arbitrary f(x,s) which vanishes as |x|~ «, Y, ﬂ:(x, i,s) given by equa-
tions (103) and (104) to (107) is an analytic function of s for Re(s) > -0y,5, for almost
all x and p. If £1, =0 (f?.:tE 0), then Y, is an analytic function of s for
Re(s) > -0y (Re(s) > —01). Therefore, the function &,(x,u,s) defined as

q’i(X,IJ.,S) = l//:t(X}I‘L;S) - 'l/ui(X,lJ«,S) (RE(S) > - mln) (110)

has the same analytic properties as , in the right-half plane Re(s) > -0, except
that it is 0@) as |s| - . If y, has a branch cut along ('Umin: ~-01 (1 - cl)), that is,
if Opyin > 01(1 - cq), then

o) - - - ) (111)

on the branch cut. Similarly, if ¥ , has apoleat s=s,, then

Residue (q)i)s = Residue(zpi)s (112)
n n

Explicit Form of ¥ (x,u,t)

The definite parity parts of the time-dependent solution therefore can be written
from equation (7) as

1 '}’+1 o

T, ) = Tyulx,,t) + 5= e &, (x,u,8) eSt ds (113)

By using the analytic properties, one can deform the contour to the left and obtain, in
general,

T, (%, 1,t) = ¥, (X, 1,t) + z Residue E,Di(x,u.,s) esﬂl

S=8p
1 -op{-c1) - A o
+-ﬁ g—o . l}pi(x,u.,s)] - E[/i(x,u.,s):l et ds
min
+ _1 m1n+1°° I:"l/:i:(x’ IJ';S) - Wui(X,IJ-’S)] eSt ds

27i Lo
-Omin-1%

3o lim g Wo(x,0,8) eStds  (-opip<-oy(l-cp)<sy)  (114)
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where Cp is a small circular contour of radius p with center at s = —01(1 - cl). All
the contours are indicated in figure 4. Generally, the point s = -01(1 - cl) will not
satisfy the eigenvalue conditions (eq. (81)) and the contribution from the contour Cp
vanishes as p — 0. If, however, s = -0y (1 - cl) happens to satisfy equation (81), the

contribution from the contour Cp has the form of a discrete residue term. Details
concerning this point are discussed in appendixes I and K.
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Figure 4.~ Integration contours for the inverse Laplace transformation of
v{x,p,s) when VOl(S) branch cut is embedded in the vpo(s) Dbranch
cut, cp > 1, and the initial distribution is arbitrary.

Equation (114) is the solution of the time-dependent problem written in a form in
which the uncollided portion of the initial distribution f(x,1t) has been separated. For

arbitrary £(x,u) the contour cannot be deformed further to the left. It is indicated
in the final section that this solution reduces to those obtained previously by others for

special cases of the present problem.

This section is concluded by indicating the form of some parts of equation (114).

The uncollided term ¥, (x,u,t) is given explicitly by equations (104) to (107). The
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form of ¥, (x,u,s) on the branch cut ("Gmin’ —01(1 - cl)) was given in the previous

- +
section. From those results, it follows that on this branch cut, l:z,//i(x,u,sil - El/i(x,u.,s):l

can be written from equations (91) and (92) as

[‘Pi(x’#:s)]_ - [Wi(x,#,s)T = {E‘zi * %F 24 (2 ”oz’s)]— i E’Z:*: * %in(é’ VOZ’S):I-*}JZ:E(X’I'L’S)

(115)
for Il <a and
Wabom )] - [pbom,9)] = [ag, + 1 Fouauns)] Fratems)]
[age + A Fnulargns) [Frabums)”
{[bli (aons] oy Goms)
- [bre - Fulavops) w_VOI(x,u,% (116)

for x > a, where |:a2i + %in_(a, VOZ,S)} is given by equation (88), V¥p,.(x,u,s) by

equation (76) and [bq, - F -a,vn1,8)| by equation (87). The solution Y, (x,u,s) has
1+ + 01 +

poles at s =s(,...,syy because of the poles of l}'2i + %in(a,voz,s):l vééxl)/z. Again,

from the results given in the previous section, it follows that

Residue E,lzi(x,u.,s) esﬂ
Sn

{kl/i(x Iy s)[ (1+1)/2:| Residue vo(%;l)/z g, + -;—in(a, Voz,s)il} (117
s
Sn

n

(1¥1)/2

Note that the factor v, (1+1)/2

is introduced so that 11/ Yo and

‘:3.2 L+ %Fz i(a, voz,sil 0(%*'1)/ 2 are single valued on the branch cut of vy, (see egs. (95)

snt
and (96)). These terms have an exponential time dependence e ™" and the implicit
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equations, namely, equations (77) and (81), from which the eigenvalues {sn> can be
computed have been obtained. Since information concerning the behavior of eigenvalues
(that is, number, location, etc.) as a function of material properties is not readily
obtained analytically from such expressions, a numerical study of real time eigenvalues
has been made and the results are discussed in the next section.

!

CALCULATION OF TIME EIGENVALUES

First note that the eigenvalues and pseudo-eigenvalues depend on five parameters
(cl, 01, Cg, 09, and a) and therefore many numerical computations would be required
in order to determine the specific dependence on each parameter. It will be seen that the
bare-slab results of references 12 and 13, the theorems of reference 9 for slabs sur-
rounded by purely absorbing media, and some observations of the present numerical
results for a few reflected slab cases allow some conclusions about the behavior of
eigenvalues for reflected slabs as a function of the slab half-thickness a to be drawn.
However, rather than compute eigenvalues {sn> in terms of c¢1, o0y, Cy, 02, and a,
one defines a nondimensional variable ¢ and nondimensional parameters og, op, and
A as

_S+ 0'2
T C0y

€191
O'R - €909
(118)

01 - 03
D = T¢y0

A =c909a

In terms of these quantities, the branch cut of vy9 becomes the real interval (0,1) and
the branch cut of vy becomes the real interval (—O’D, -0p+ O'R). Since 0, and cp,
are nonnegative, it follows that

1
where the equality holds only if oy = 0. Also cy has been restricted to less than unity
sothat -op+ og 21 impliesthat cg <1. Obviously, og =0 when the reflector is a
purely absorbing medium or a vacuum and op =0 when the total macroscopic cross
sections of the two media are the same. It has been shown in the previous section that,
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in general, the inversion contour can be deformed to the left only as far as Re(s) = -0,,;,
which corresponds to Re(f) = max (— oD,O). However, there are no eigenvalues on the
branch cut of vgy so the region of the real {-axis where the eigenvalues {Cn} should
appear is

max (—O‘D + ch,O) <g, <1 (120)

This interval corresponds to s € Sqj N Sg; and equations (77) and (81), written in terms
of the quantities of equations (118), are solved numerically to obtain the real eigen-
values {gn} for specified oR, Op, and A. The pseudo-eigenvalues are obtained
numerically by solving equations (82) and (83) also written in terms of the quantities of
equations (118). In addition, numerical results are obtained in the thick-slab approxima-
tion, that is, equation (81) with §2 +(1) = 0. Details concerning numerical procedures
and computational equations are given in appendix J.

The time dependence of discrete modes is seen from equatidns (114) and (117) to be

Cyl -1)ost
oot - o257 (121)

Now ¢, =-0op + 0g impliesthat s, = -01(1 - Cl) =0 since cq <1 and the equality
holds only if oy =0. Therefore such ¢, values correspond to time-decaying modes
regardless of the value of cg. For values of { = within the interval (120), the time
decay or growth depends on whether c9{, is less than or greater than unity as can be
seen from equation (121). A discrete mode represents a critical system if col, = 1.
The largest eigenvalue ¢, with an even parity eigenfunction corresponds to a critical
slab problem with parameters

1
Cslab = 'c?a

R
Creflector = € + %p (122)

Oslab@critical = S04

where a;.itical 1S the critical slab half-thickness. It is generally known (see, for
example, ref. 2) that the critical radius for a bare sphere (O‘R = O) can be obtained from
the largest slab eigenvalue {7 with an odd parity eigenfunction. That is, when {; is
used in equations (122) in place of o> the acritical is the bare-sphere critical radius.
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Comparison With Published Numerical Results

Many different combinations of material parameters could be considered, but here
the study of the eigenvalue behavior is restricted to the case of overlapping branch cuts.
As op departs from zero, one would like to see how the eigenvalues depart from those
previously reported (refs. 12 and 13) for a bare slab. A comparison of the present
eigenvalues {Cn> for vacuum reflectors, that is, oR =0, with those of reference 12 is
given in tables I and II. Results generally agree to three figures for slab half-
thicknesses A {from 0.4 to 20. In table II, eigenvalues calculated in the thick-slab
approximation are also shown for bare slabs. For slabs with half-thicknesses A > 1,
the thick-slab approximation generally agrees with the numerical solution of the exact
eigenvalue condition to three figures. This agreement can be seen from table III where
such results are compared as oR departs from zero with op =0. From the bare-
slab resulis (ch = 0) of tables I, II, and II, critical slab half-thicknesses are obtained
from {5 by using equations (122). These values are compared with the critical slab
half-thickness results of Mitsis (taken from ref, 2) in figure 5 (open symbols). Closed
symbols give critical sphere quarter-diameters obtained from equations (122) and ¢y
whereas Mitsis' critical sphere results are taken from reference 22. The agreement is
good to the scale of the figure. For oR =0, the eigenvalues {; and ¢y have also
been compared directly with numerical bounds computed by Mullikin (ref. 23) for bare
slabs and spheres and again the agreement is good. Critical half-thicknesses for slabs

TABLE L- EIGENVALUES {,} FOR BARE SLABS

Eigenvalues for —
n A=1 A=5 A =10 A=15 A =20
Present | Reference 12 | Present | Reference 12 | Present | Reference 12 [ Present | Reference 12 | Present |Reference 12
0] 0.703 0.705 0.975 0.975 0.993 0.993 0.997 0.997 0.998 0.998
1 .897 .897 .971 971 .987 .987 .992 .992
2 .762 .162 .935 .935 .970 .9'70 .983 .983
3 .560 .560 .883 .883 .946 .946 .969 .969
4 276 276 814 .816 915 915 .952 .951
5 128 127 8717 811 .930 .930
6 .621 .621 .831 .831 .904 905
7 .493 .493 1T 171 .874 .874
8 .340 .340 .714 .14 .840 .840
9 157 157 .642 .644 .800 .800
10 .560 .560 .756 .756
1 .467 467 .707 .707
12 .362 .361 .653 .653
13 243 243 .593 .593
14 .110 110 526 526
15 453 453
16 .373 373
17 .286 .286
18 190 .190
19 .084 .084
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TABLE IL.- EIGENVALUE {; FOR THIN BARE SLABS

Eigenvalues determined by -
Slab
thickness Thick-slab
’ ? ; Present Bowden
approximation
eq. (J19)) (eq. (J6)) (ref. 12)
1.0 0.702 0.703 0.705
.8 .612 .615 .615
.6 473 .483 .483
4 244 .282 .282
2 (*) .043 .048
*No solution found for ¢ > 0.001.

TABLE IiL.- EIGENVALUES ¢, AND ¢; FOR THIN REFLECTED SLABS

o0 = 0]

Eigenvalues for —
A=0.4 A=0.7 A=1.0
R %o %o %o
Thick-slab Present Thick-slab Present Thick-slab Present
approximation | solution | approximation | solution { approximation | solution
(eq. (J19)) | (eq. (J8)) eq. (J19)) | (eq. (J6)) eq. (J19)) |(eq. (76))
0 0.244 0.282 0.550 0.556 0.702 0.703
2 .36 .398 .600 .604 727 728
4 .512 .522 .661 .663 759 .759
.6 .656 .660 .739 .740 .803 .803
.8 .816 .817 .843 .844 .870 .870
Eigenvalues for —
A=1.4 A=20
oR S %o S| %o
Thick-slab Present Thick-slab Present Thick-slab Present Thick-slab Present
approximation | solution | approximation | solution | approximation ; solution | approximation | solution
eq. (J19)) | (eq. J6)) | (eqa. 319)) | (eq. (J6)) eq. (J19)) | (eq. (J6)) eq. (J19)) | (eq. (J6))
0 0.142 0.132 0.808 0.808 0.508 0.508 0.885 0.885
2 .252 .2417 .820 .820 .540 .539 .891 .891
4 .403 .402 .836 .836 .585 .584 .898 .898
.6 5*; §*3 .860 .860 .656 .656 .909 .909
.8 * * .900 .900 (*) (*) .930 .930

with infinite reflectors have been recently computed by Kowalska (ref. 24) for a number

*OR > ¢y (or g1 in branch cut of VOI).

of combinations of cglap 2nd Creflectors Some present results g for o #0 can

be compared with the critical slab half-thicknesses of reference 24. The parameters
op, and A by equa-

are given in terms of {; and the present input quantities op,

tions (122).

Figure 6 gives a few present cases (circles) for which cgjg;, was close to
some of the points (diamonds) of reference 24; no attempt was made to compute exactly

these points. The present cases for cgjap ®1.11 arefrom A =2and1.4 in table II
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Figure 6.~ Critical half-thickness for finite slabs with infinite reflectors.

Sample Reflected Slab Results

The remainder of the results have been computed for A =5. For a bare slab with
A =5, it can be seen from table I that there are five eigenvalues. The behavior of these
eigenvalues has been studied as o departs from zero for several values of op. In
figure 7, results are given for op =0. The calculations show that the largest eigen-
value {, ispresentupto OR = 0.9999. Apparently, this eigenvalue remains up to
or = 1, which is only obtained for c9 <1. All other eigenvalues disappear into the

branch cut of vg7 at ¢, = oR, labeled with an asterisk, which corresponds to a time-
decaying mode, regardless of the value of c9. An asterisk is used in figures 7 and

9 to 11 to indicate the points at which an eigenvalue or pseudo-eigenvalue coincides with
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the branch points of 4;. Even though such points appear to have a discrete eigenvalue
type of time dependence, it is felt that they are properly part of the branch-cut integral

contribution. Note that the branch points of vy are locatedat ¢ =-0op and
{ =-op+ 0g and that the limiting form of the condition which determines whether such

points are eigenvalues (or pseudo-eigenvalues) no longer depends explicitly on OR oOr
op. (See appendixes J and K.) The theorems of Lehner (ref. 8) apply for op =0 in
figure 7.

In figure 8, the manner in which the vy, branch cuts overlap and the location of
the eigenvalues and pseudo-eigenvalues for o = 0.2 in figures 7 and 9 to 11 is indicated.

In figure 9, results are presented for op = -0.65 + 0.50g. These results typify

results for -op values in the range between zero and (CO)U 0 where the notation
R:

(?;’n)O -0 means bare-slab eigenvalue, which depends on c¢g, 05, and a. The open and
closed circles represent eigenvalues as in figure 7 whereas the half-closed circles are
pseudo-eigenvalues corresponding to s < -0y,;, = -0y. Again the largest eigenvalue ¢
appears to remain provided that cg > 1. Here, as in the next two figures, results for
or = 0 agree with the theorems of Hintz (ref. 9) which apply only for c; =0. Basically,
his result is that the strip Re({) between 0 and -op belongs to the continuous spec-
trum and that the bare-slab eigenvalues lying in this interval are not eigenvalues of the

1L~
3  Eigenvalue and branch-
1.0 point same
Left end of branch L4 Bare-slab eigenvalue
3% cut of wvpy O Reflected-slab eigenvalue
1.0 i~ © Reflected-slab pseudo-
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¢
Figure 9.- Dependence of eigenvalues C’n on op. op = -0.65 + 0.50p; A =35.
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slab surrounded by purely absorbing media. He finds that there are no eigenvalues if
-op > (?;’O)U 0’ but does not discuss the physical significance. It is seen from equa-
R:

tion (119) that for such cases, CO < 1/c2 and corresponds therefore to a time-decaying
mode. In other words, stationary (critical) or time-increasing modes cannot disappear
into the continuous spectrum as material properties are varied. In fact, when op #0,
such modes could not disappear into the branch cut of Vo1 either. In figure 10, results
are given for -op + og =1 which, it may be remembered, implies cg <1. For this
case, all the bare-slab eigenvalues lie in the continuous spectrum of reference 9 when
og = 0. Inboth figures 9 and 10, s = -0y,;, corresponds to ¢ = -op. Figure 11 shows
the behavior of the eigenvalues for op =1 and it is similar to that of figure 7. For

og = 0, the continuous spectrum of reference 9 lies in the strip -op =-1< Re(¢) <0.
Here s = -0,,;, correspondsto ¢ =0.
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point same
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1.0 v Left end of branch eigenvalue
- cut of vy
8 L
Right end of branch —_]
OR 6 cut of Vol
NI @ @
[~ (=}
, ® ® @
) (=~} %) %) )
] P g_\ 1 ! % ! I a ! % N
0 1 .2 3 L .5 .6 7 .8 .9 1.0

4

|
\n

Figure 10.- Dependence of eigenvalues §n on Og. op=o0g-1; A=

Note that ep < 1 for this figure.
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Summary of Numerical Results

All numerical results indicate that real time eigenvalues {Cn} for material
reflectors are finite in number and tend to eigenvalues previously obtained for a vacuum
as o — 0, as do the pseudo-eigenvalues for s < -0,,5,. I the set {Cn} is empty, the
neutron density is necessarily decaying in time. Conversely, if the neutron density is
stationary or increasing in time, the set (Cn> is not empty. One also expects that
when cg > 1, a critical thickness should exist; that is, the largest eigenvalue £y must
be present for large enough slab thicknesses for the given c¢o. This effect can be seen
from table I. For example, if -op = 0.8, the eigenvalue ¢, for A =1 is not present,
whereas that for A =5 would be, and represents a mode whose amplitude increases
exponentially with time for c9 > 1/0.975. That for A =20 needs only cg >1/0.998 in
order to represent a time-increasing mode.

As pointed out at the beginning of this section, some speculations concerning the
behavior of {§n> for reflected slabs as a function of the slab half-thickness a can be
made, that is, if ¢, and o0, are known what can be said about {Cn} as a function
of a. The following conclusions are based on the observation that if {5 at og =0
lies to the right of -opy, it appears to remain to the right of -op + o as op

increases until -0p + op = 1. (See figs. 7 and 9.) The dependence of (50) 0 on
O =
R
slab half-thickness is given in tables I to III and many more points are given in refer-
ence 12. First, if -op + og 21 (this inequality implies cg < 1), the set {t,) is
empty for all a. However, there may be pseudo-eigenvalues if -op > 0. Next, if
-0p + O <1, then two cases arise, depending on the value of op

(1) When -op > 0, then regardless of the value of cg, one can find
an a* suchthat a <a* implies that the set {tn} is empty, whereas
a >a* implies that the set {tn} is not empty. The number a* is

obtained from the bare-slab result (g’o)c —g 28
R=

E0(02’°2>a*>]

_n=-0 (123)
og= D

(2) When -op £0, the set {Cn} is never empty. Thus, given c,,
Omy» &, and the bare-slab eigenvalues corresponding to c¢g, 09, and a, one
can say whether the set {Cn> is empty. Furthermore, the number of eigen-

values {tn} will not exceed the number of bare-slab eigenvalues (Cn)o 0

which are greater than -op. Finally, the number of real reflected-slab
eigenvalues and pseudo-eigenvalues does not exceed the number of bare-slab
eigenvalues.
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COMPARISON WITH OTHER ANALYTICAL SOLUTIONS

General Form

It has been shown by using Case's method that the solution of the initial-value prob-
lem of monoenergetic neutrons migrating in a finite slab (properties cz,orz) with infinite
reflectors (properties cl,ol) can be written in the form

U(x, 1,1 = Uy(x,u,t) + Z Resuiue[tp (x, s)] esnt

S=8p

-01 -c1)

+ 2%”,1 {E{/(x i, S:I Ep(x L, s):l} eSt gs

1 O'mln+l
*3.3 S'Umln Wi, 12,8) - Wyl ,9)] €St ds (-Umin <-01(l-cq)< Sn) (124)

In this equation, t is the real time multiplied by the constant neutron speed, 0p,i, is
the minimum of 07 and 09, and each Y function is the sum of its definite parity
parts Y,. Some terms of the solution (124) will not be present if —om-myf—ol (1 - cl) %sn.
That is, if —01(1 - Cl) < =Opmin, then the branch-cut integral does not appear. Likewise,
ifall s, < —0'1(1 - cl), there are no residue terms. These discrete eigenvalue terms are
characteristic of a finite slab whereas the branch-cut integral term is typical of a semi-
infinite medium. The term \Ifu(x,p.,t) describes the behavior of neutrons from the ini-
tial distribution £f(x,it) which have not suffered a scattering collision and its definite
parity parts are given in equations (104) to (107). The discrete eigenvalue terms in
equation (124) are given by equation (117) whereas the integrand of the branch-cut inte-
gral is given by equations (115) to (116). The definite parity parts of the last integrand
are given by equation (103) and equations (70) to (73). The eigenvalues {Sn} can be
computed as was demonstrated in the previous section; thus, all terms in equation (124)
can be calculated.

Special Cases

In all special cases of the present problem which have been solved using the Lehner-
Wing technique (refs. 6 to 9), cy =0. Inthese cases, there is no branch cut due to
vOl(s); therefore, the branch-cut integral is not present in equation (124). It was shown
that as ¢y — 0, the eigenvalues {Sn} which are greater than -0p,i, approach those for
a bare slab as do the pseudo-eigenvalues for s < -0,,;,,. The solution ¢, has the
proper behavior as ¢y — 0 since those terms of equations (65) and (66) which appear to
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blow up in such a limit actually cancel when the contour C' is collapsed on to the por-
tion of the branch cut of Q,,(z',s), 0=z'=1, When the uncollided term is combined
with the last integral, it is then seen that the solution (124) and the eigenvalues {Sn}
have the behavior required by the theorems of Lehner (ref. 8) and Hintz (ref. 9). The
present problem reduces to those considered by Lehner and Hintz, respectively, when

c1=0
(125a)
91 = 0y
and
Cl =0
(125Db)
o1 # 0y

In order to describe the same physical problem in the slab as that solved by Lehner
and Wing (refs. 6 and 7), one must not only have

Cl =0
(126)
Cfl =0
but also
fx,n) =0 (x<-a, >0 and x>a, wu<0) (127

In other words, neutrons from the initial distribution outside the slab cannot impinge on
the slab faces at times t > 0. Lehner and Wing solved the time-dependent problem with
boundary conditions:

W(za,p,t) = 0 (b0, t>0) (128)

Restrictions (126) and (127) in the present solution make Iy, (u,s) and therefore

Ay +(u,s) depend only on slab properties. Then, in looking for solutions inside the slab
(Ix| < a), the inversion contour along Re(s) = -0ip, can be deformed back to

Re(s) = -09, and one picks up a residue contribution from any pseudo-eigenvalue in the
region and thus obtains the Lehner-Wing results. That is, the solution has the proper
form and all bare-slab eigenvalues are recovered.
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The analogous problem for cq # 0 in which the inversion contour can be deformed
to the left of Re(s) = -0jp for |x| <a is obtained when 09 > 0y and fy(x,u) =0;
that is, if

fx,u) =0 (Ix} >a and o9 > 01> (129)

then all terms in Ip,(u,s) which contain s+ ¢y factors in the exponentials are identi-
cally zero and this allows the contour along Re(s) = -0,,;, to be deformed back to

Re(s) = -09 when |[x| <a. Such a deformation is not possible for |x|> a; for this range
of x, one must stop at Re(s) = -0p,5, = -0y, If there are pseudo-eigenvalues in

-09 < Re(s) < -01 = -0p;,, (see, for example, fig. 9), they will appear in the solution for
|x| < a as residue terms which have the exponential time dependence. They are however
not eigenvalues for the reflected slab since such terms do not appear for |[x| > a.
Erdmann (refs. 15 and 16) solved the time-dependent problem for two semi-infinite media
where an isotropic pulse of neutrons was introduced at the interface, and found that the
inversion contour for x € medium m could be deformed to the left as far as

Re(s) = -0,,,. In the present problem, such deformations can be made only when condi-
tions (129) are satisfied. It appears that the contour Re(s) = -0y, cannot be deformed
to the left of Re(s) = -09, since the implicit equation which determines Ag,(u,s) (see
eq. (I3)) requires Re(s) 2 -0y9. Apparently, Re(s) = -09 is the edge of a continuous
spectrum in all cases for the reflected slab.

CONCLUDING REMARKS

The present solution has been shown to have the required properties in all special
cases which have been solved previously by others using the Lehner-Wing technique.
However, in all these rigorous solutions, there was no scattering outside the slab. It
was seen that with infinite reflectors on the slab and neufrons anywhere cutside the slab
initially, it is possible for some neutrons which have spent their entire history in the
reflector to impinge on the slab faces at later times. Such neutrons have a collision rate
which is characteristic of reflector properties and this condition, in general, places a
restriction on how the inversion contour can be deformed in the transform plane., Two
cases have been illustrated in which a further deformation is possible for the solution
inside the slab by eliminating neutrons outside the slab initially, which can later impinge
on the slab faces. This condition is equivalent to a further restriction on the Hilbert
space which has been used in some of the above-mentioned rigorous solutions. The exact
eigenvalue condition has been obtained, and real time eigenvalues have been calculated
for a number of combinations of material parameters. The largest eigenvalues have

55



been shown to agree with the criticality results of others. Calculations also show that
eigenvalues can disappear into the branch cut or continuum as material properties are
varied and it was pointed out that all such disappearing eigenvalues correspond to expo-
nentially time-decaying modes since the number of secondary neutrons per collision in
the reflector was taken to be less than unity. It is expected (but has not been shown) that
there is no drastic change in the shape of the solution when this situation occurs; one of
the integrals in it probably has resonance-like terms caused perhaps by zeros of the
eigenvalue condition on the next Riemann sheet. The assumption that the eigenvalues are
real for arbitrary slab half-thicknesses has been made. This assumption has been shown
to be true for thick slabs in this report and it has been proved rigorously by others for the
above-mentioned special cases. On the basis of sample calculations, it is concluded that
if one is given the material properties as well as the bare-slab eigenvalues corresponding
to the slab properties, then he can conclude whether there are eigenvalues and the maxi-
mum number of them.

Perhaps the present results can serve as a guide for a rigorous Lehner-Wing type
analysis of the reflected-slab problem. If the eigenvalues are all real, one might be able
to prove it in such an analysis of the present problem.

Langley Research Center,

National Aeronautics and Space Administration,
Hampton, Va., November 12, 1970,
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APPENDIX A
SUMMARY OF ELEMENTARY SOLUTION PROPERTIES

In this appendix, the elementary solution properties derived by others (refs. 12 to
to 16), following the lead of Case (refs. 2 and 11), are summarized. These solutions are
obtained from equations (21) to (23) and are given by equations (24) to (26). Such solutions
are complete and orthogonal in the following sense. A function, say g(u), satisfying very
weak restrictions (see, for example, appendix G of ref. 2) for -1sa=p=8=1 canbe
expanded as follows:

(1) Full range (a=-1; B=1):

1
g(n) = [amgo,,Om(m + bm@_VOm(u)] Bin(s) + 5_1 A () 0 (1,8) dv (A1)

where the notation 6y(s) was defined by equation (30). The orthogonality relations used
to determine the expansion coefficients in equation (Al) are

1 1
5 1 ompn9) dn 7 An0) omyfin,9) @ = () 0 08) 04 (07,9

and for s e Smi

1 )
n (u,s) dpu =0
g_l P (U qoi,,Om(u) K
' ) ()
w _ du =0 A2
5_1 %Om(u P vy, W) A (A2)
1 2 1 2A1
g Ry, “(u) du =S¢ 0, Vom' Oy (:H’Om’s>
-1 Om 2 J
where
Q! (v s) =4 (z,s) (A3a)
m\“"0Om? dz M\

Z=V0m
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APPENDIX A — Continued

and

imCy Oy (A3b)

Qn:f(v,s) = A (v,8) £ 5

(2) Half range (@=0; p=1):

1
50 = amoy, (1) 6a(6) + | Am() @myln9) @ (a9)

Here the orthogonality relations for se S,,; are

1 1 )
fo Wi (1) @ (it,8) du §0 Am(¥) @ (,8) dv = A () Wi () 2,700,8) Qp(v,s)

1
go Wimn(i) 05, (1,8) @y (1) dis =0

1
So Win () oy, @y (1) dp = YemOmYomXm (-Yom.$) -y,

(C mm¥Y0m

1 2
S‘O Wm(/l) (,ﬁyonl(li) (Piyorn(#) dp =¥ ) > Xm(iVOm’s) (Asa)

1 e O2
So W) @y W) Om(-),8) du = (—rgz—m) 2 SN A

1
S‘O Wm(u) (pmy'(l‘l”s) qﬂm(_y)(uys) dl‘L = Cranm V'(Vorn + V')Xn]("y,s) q)m(_y)(v',s)

1
Eo W (1) 0, 1,8) du = —;—cmomv

where

Cmomk
ZQn](OO,s) (VOm + LL)Xm(—[.L,S)

W, (1) =
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APPENDIX A — Continued
and

Xm(1,5) _ m(e,9)

N 0=sp=1) (A7
Xnlu,s)  2y(u,s) (0=ups=s1) (A79)

with X,(z,s) given by

1 ‘Q *(y,s)
_ 1 -1 m\"s dv
X (2,8) = 1-z P ZﬂiS;) loge Qmlv,s)| V-2 (A82)

Several other equivalent expressions for X,,, generally referred to as the X-identities,

are given by

g 2 (2,8)
(Vomz - zz)Qm(oo,s) Xm(-2,8)
X, (2,8) = (A9a)
Cm%m S‘ L di
2%m(=,8) Jo (v 2 - wBKpy(-p,8) (- 2)

The orthogonality relations for s e S, for the expansion (A4) are
1 1 . R
SO Wm(ﬂ) ‘Pmy"(u',s) du S‘O Am(v) Qamy(“':s) dv = Am(V') Wm(v') Q'rn (V',S) Qm(y',s)
1 1
50 W () @y (1,8) @y (,8) dit = 501001V Ky (-1,8) @y () (¥',5) (A5b)

1
§O W, (1) @ p(u,s) du = %cmomv

where

Cm Oy 14
% = mm 0sp=s1 (A6b
ml) = S R (0sp=1) (A6D)
and
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APPENDIX A — Concluded

XOn:-(“')S) - Qn-]‘—(u;s)
XOH;(H,S) QH;(IJ')S)

©O=ps=s1) (AT

with Xg.,(z,s) given by

1 Q. (v,s)
1 S l_m s dv
X z,8) = eXpl{=— lo — A8b
om (2,5) PG~ 0 ge@m(y,s) 5 (A8b)
and the identities
-
2 (2,8)
‘Qm(oo,s) XOm(—Zys)
XOm(Zys) =
c..G 1 d
14 m B ay A9b
1 20(=,5) o Kom(8) (4 - 2) (490)

These half-range orthogonality relations and identities are obtained by extending the
time-independent results of Kuscer, McCormick, and Summerfield (ref. 20).

A result, due to KuScer and Zweifel (ref. 14), which is needed to continue solutions
analytically follows from equations (A9a) and (A9b). For a fixed value of z, X,(z,s)
does not become Xy, (z,8) as s crosses Cp,. However, it can be shown from the
first line in equations (A9a) and (A9b) that

= Xom(z,s) (A10)
S5—~Lm
S ESmi

(VOm - z)Xm(z,s) oC,.

S €Sme

By use of reference 14, the function Xg,,(z,s) is redefined to be continuous as s - C,
by equation (60). Such a function of the two complex variables z and s has the fol-

lowing analytical properties (ref. 14):

Fixed s: no singularity in z-plane cut along (0,1); one simple zero at z = v, (s),
Re(v0m> 20, only if s e Spy;

Fixed z: no singularity in the s-plane cut along (-O’m, -Om (1 - cm)); one simple
zeroat s= -0, + Cy0p 2 tanh~1 > for Re(z) >0
Note here that Xq,,(z,s) is a nonvanishing analytic function of z and s for Re(z) <0

and s ¢ (—om, -om (L - cm)), the branch cut of v, (s).
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APPENDIX B
DERIVATION OF wmpi(x,u,s)

In this appendix, explicit forms of ¥y, +(%,1,8) are obtained. Consider, for
medium m, the function g, (x,u.;xo) as

_
“Din(x0) ¢-v, (1) o Erom)(Ex0)rom 5 o)

0 _ _
—E_ , Cm(%0,7) Prv(K,s) e (S+om)60)/” g (x <=x)

&m(X: H3%g) = (B1)

Cm(*0) %Om(u) e_(swm)(x—xo)/ “0m 8y (s)

+ §) Crfror) omalis om0l g, (x> x0)

The expansion coefficients in equation (B1) are to be determined so that g, (x,u.;xo)
satisfies equations (42) and (43); that is, on putting the expansion (B1) into equation (43),
in the limit x - X

£, (%, 1
—E("TL—O—M_) = [Cm(x()) QDVOm(“) + Dm(xo) <P-y0m(ﬂ-) Oy (8) + S—l Cm(xo,v) Omp(K,s) dv

(B2)

This equation is a full-range expansion (see eq. (Al)) of the function fm(XO: p,)/u. and
use of the orthogonality relations (A2) gives the coefficients as

1
1
Cm(X0,?) = - g £ (X0s1) @ p(k,S) du
m(O ) VQn:l*-(V,S) Qp (v,8) V-1 m(O ) my

and, if s € Sy

1
— 2 g
C = f B3

m(xo) CmomYon= (Yomss) V-1 ) g[)VOm(M) an (B3a)
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APPENDIX B — Continued
and

1
Dpy(xp) = 2 §_, tmls0sb) 9o () s (B3b)

CmeVOrr%Q';n('VOm’S>

However, one needs expansion coeifficients for fm;t(X0>U~) /u. It follows from equation
tions (B3) that

Cm:t(XO:V) = %E:m(xo,v) FCpy (—Xo,—V)]
and, if se S ;,
C _1
m(X0,Yom) = g[cm(xo) T Dm('XO)] (B4a)
and
c vy ) = 1D T Cpy (- 4
(50, -V0m) = 5[Pm(x0) ¥ Cm(-%o)] (B4b)

are the expansion coefficients of £, :!:(XO’ p.)/p.; that is, equations (47).

In order to construct ‘Pmp +(%,1L,8) according to equation (41), note that for m = 2

gmediumz () o =S:, (- ) dxo =S‘: (-..) dxg +S: (..)dxg (B5)

Upon using equation (B1), one obtains tlxzp(x, K,s) as

Vg, 11,5) = B“ Cylg) o720/ 02 dxﬂ Wiy 615) 8(5)

-a

11 % o.
+ S() B- CZ(XO, V) e(S+ Z)XO/V dXO:I gl/zv(x,u,,s) dv

a

) B‘: DZ(Xo) e—(s+02)XO/V02 dXo} w_yoz(x,u,s) b9 (s)

ol

S‘: Cz(Xo,—V) e~(s+o-2)xo/y dxo] wZ(_y) (X’ tuis) dv (BG)
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The definite parity particular solution “(’Zp 4(%,1,8) is then obtained by using equa-
tions (B6) and (B4) as

wzpi(x,u.,s) = B‘: CZ:&(XO’VOZ) e(S+02)XO/V02 dx(ﬂ ’#VOZ(X,LL,S)
-x c.
iBaCh@m%ﬂgmzﬁd%%memg&mﬁ6ﬂ$
1| ~x (s+02)x0/v
+ 50 S\—a CZ:{:(XO’V) e dxy| Yo (x,u,8) dv

1) p-x S+0. v
+ 50 B—a CZi(XO,V) e( 2)X0/ dx(J z,//z(_y)(x,u,s) dv (B7)

That equation (B7) is a solution of equation (18) for m =2 can be seen by direct substi-
tution as follows. The ¥,,,(x,u,s) in equation (B7) are solutions of equation (21), the
homogeneous equation corresponding to equation (18). However, their coefficients in
equation (B7) are functions of x so that some additional terms are obtained from the

9 .
% operation. Thus,

M{E:zi(X, Y02) Prge(H) + C2x(xs-v02) qo_yoz(u)] 89 (s)
1
+ S\_l Czi(X,V) ¢2y(#75) dl} =f2i(X,,LL) (B8)

which is an identity since according to equation (47), the Coy, are the full-range expan-
sion coefficients of fg9,(x,u)/1.

To get z[xlp(x,u,s) according to equation (41), first note that

S\i{w()d}(0+‘g‘;a()dx0+§:()dx0 (x < -a)

: (89)
-a X o
Stmrf o f (Loag  6a

-0
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By following the same procedure as before, one gets 'Jflpi(X,l«L,S) as

X
Vipal1,9) = B_w C1:(x0:%01) 5+1)%0/ 01 dxo} Yy, GktsS) 61(5)
11 ~x
+ gO [S:co Cl:!:(XO’V> e(s+01)XO/V dx(J Y1 (%, 0,8) dv
+ \}Ya C1+(x0,-v01) e~ (Forf o/ o1 dxg
X
-a S+01)X 14
+ S‘_w Cl:l:(XO!VOI) e( 1) 0/ 01 dx(J z,l/_VOI(x,p.,s) 61(s)
1] A _
¥ go “1 ’ Cyulx0s-v) e (s+orrof dxg
X

- i Crafrgyy) el =10/ dx(] V1 ()5, 14,8) v (x < -a) (Bl0a)

and

-a S+04)Xn/V,
gt/lpi(x,u,s) = |:§_°o Cl:i:(XO’VOI) e( 1) 0/ 01 dxg
¢S\—ZL Cli(xo,_l/()l) e-(S+01)XO VO]. d.XO] wVOl(X,I-L:S) 61(5)
-X
1}p,-a S+0.)XA/V
+§o B_w C1a(*0,7) Jereial %o
¥ g—a Cl;{:(XO’_V) e—(s+01)x0/v dx(;l Y1y, 1,8) dv
-x
+ S\_x C (x % 1) e(s+01)xo/v dx(;l % (x,1,8) 61(s)
. C1z(%0:%0 ~vgy ok

1lex 5+01)Xq/V
+ S\O B_oo Cli(XQ,V) e( 1) 0/ dxél wl(_y)(x,u.,s) dv (x>a) (B10b)
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APPENDIX B — Concluded

Again, it is easily shown by direct substitution that equations (B10a) and (B10b) are solu-
tions of equation (18) for m = 1. By introducing the F functions of equation (46) and

allowing x to take on negative and positive values, it follows that equations (B7), (B10a),
and (B10b) can be written as equations (44) and (45).

Also note here that the Cp,, coefficients of equations (B4) have the property

Cs ("XO’ 'V) = :chi(XO’ V)

(B11)
Cmi(‘XO: 'VOm) = _‘*_'Cmi(XO’VOm)
so that it then follows from equations (46) that
in(a,-w,s) = ini(a,w,s)
(B12)

f‘i(—a, -w,8) = ¥fi(—a,w,s)
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APPENDIX C

TWO-MEDIA FULL-RANGE EXPANSIONS AND
ORTHOGONALITY RELATIONS

In this appendix, some results of references 15, 16, and 20 are summarized and

extended. In reference 15, it is shown that a function, for example, h(u), satisfying very
weak restrictions for u on the interval -1 =2pu =1 can be expanded as

1 0
h(k) = 219y, (1) 81(5) + bpg_, (1) 65(5) + fo A1(V) @y, (1,8) dv + g_l Ag() @ (i1,8) dv
(c1)

This equation is a two-media full-range expansion of the function h(u) and the expansion
coefficients in it can be determined by using orthogonality relations which are easily
determined from the time-independent ones of reference 20. For &1(s) = 69(s) = 1, that
is, s e 515N Syj, these relations are

3“_11 W(n) @,:(u,s) du 51_11 A@W) &,(1,8) dv = A(v") W(') QF(",s) Q7 (1",5)
\S‘_ll W) @y(1,8) @y (1) du =0
5_11 W) @,(1,8) .y, (1) du =0
S_ll W(u) quOl(u) qa_yoz(u) du =0

1
S:l W(n) ®,(u,s) 90_,,01(#) du = ve(v) o(v) V01(V02 - Vol)x(-Vol,S) ('D’VOI(V)

1 (C2)
§, W) @,089) 0, din = ve() o) ¥3 (1 - 02)X(02:5) Py,

1 €101Vp1 2
S\_1 (w) VOl( ) i1’01( ) d < 2 ) (VOI * v92)x(i1}01’s)

Equations continued on next page

66



APPENDIX C — Continued

1 CoOyV, 2
2%%02
dy = |—===
g_l W(i) 90_1,02(#) qoiyoz(u) 1 ( 5

) (Y02 F Yo1)X(028)

1
-1 2
g_l W) 901,01(#) qoyoz(u) du = - 5191%2%%01%03 x(vog,S)

1
1 2
W) @ (1) (1) dp = c101Co09Vn £ vasX(-Va1,S

where
Cl’ 0‘1
c(v),0(v) =
€2,03
@, (1,8) =
(pz V(‘LL,S)
Qf(v,s)
Q*(v,s) =
Q5 (v,s)

x(z,8) = X1(z,s) X9(-2,8)

(VOZ + V)Xz(—v,s) W(v)
W(V) =
'(VOI - V)XI(V,S) Wo(-v)

(v>0)

(v <0)

(v>0)

(v <0)

(v>0)

(v <0)

(v >0)

(V<0))

All remaining quantities have been defined in appendix A,

(C3)

Rather than write out explicit orthogonality relations for the other three regions of
the transform plane in the present notation, one introduces a function which is continuous
as s -~ C,,. From the results of reference 14 quoted in appendix A, it is seen that one

such function is given by equation (59) and can be written by using equation (60) as
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Xy(z,8) =

APPENDIX C — Continued

/(VOZ - z)Xz(z,s)
(VOl - z)Xl(z,s)

(vo2 - 2)X9(z,5)
Xo1(z,s)

Xpo(2,8)
(v01 - z)Xl(z,s)

on(z,s)
Xq1(z,s)
N 01

In terms of this function, W(v) can be written as

c202v 1

The function

X(Z:S) =

ZQZ(OO’S) Xo(V,S)

x(z,s) is expressed as

(XO(-z,s) Q1(z,s)
(Voz + z) <z/01 - Z)Ql(oo,s)

1 $29(2,s)
(VOl - z)Xo(z,s) (VOZ + Z)Qz(oo,s)

\

(S e S1i N SZi)
(S € S1e N SZi)
(s € 811 N SZe)

(S € Sle n Sze)

(v>0)

(v<0)

(Re(z) > 0)

(Re(z) < 0)

(C4)

(C5)

(C6)

In order to obtain a two-media expansion in the form of equation (C1), one generally has

to switch some continuum solutions in one medium to those in the other.

explicit form of ¢,,,(1,8) (egs. (24)), it follows that

€101 99 (1,8) - caog@q,(1,8) = kd(u - V)

where
k= s(cl
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It is seen that when the two media are the same, k= 0. This quantity can be expressed
in a number of different ways, and several that will be used are

clolkz(v,s) - C20'2)L1(V,S)
k= 010'192(1/01,5) (C8)
—020291(1102,5)

The orthogonality relations (eqs. (C2)) can now be written in terms of Xg(z,s) and
k as
~

1 1

S‘ 1 W(n) &, (u,s) du S\-l AQW) &(1,5) dv = AW") W) @4(0,8) @7 (,9)
1

§, W) #(,8) @y, () an =0
1

g—l W(n) @,(u,s) <P_V02(u) du =0

1
g_l W(u) <p1,01(u) 90_1,02(#) dp =0

ve(v) o(v) vy1k
4Q9(,s) XO(“VOLS) (V01 + V)

1
§, W) 200.9) 9-y () s =

ve(v) o(v) vo2kXo(-vp2,8)
491 (,s) (voa - V)

1
5-1 W(p) &,(i,s) goyoz(u) du = - (C9)

1 )2 Ql'(v()l,s)
5Cq01Y ————X(-v01,5
. (2 191%01) g (=,9) 0(-v01,5)
w du =
g_l (1) <p,,01(u) qoi,,OI(u) 1 .
101%01K
892(°°,S) XO(_VOI’S)

Equations continued on next page
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c05702kX0 (-¥02,5)
891(003 S)

1
5_1 W) o_, (1) P, o () du =

—VOZ t
1 2 Q(2s) 1
_<.2.0202V02) Q9(x,5) Xg(-vp2,8)

1 C101Vn1 Y, k}{“(—l 02 )
S' 1 v (nu‘) ¢ Vol(‘ ) ' VOZ(‘ ) 4\521( JS) (101 - 02)

1 Co09Vn1Vnok
292Y01%02 1

du =

5—1 W (1) 90_1/02(“) ‘,D-Vol(“') H 492(“’,5) (VOZ - VO].) XO(—VOI’S) )

These expressions appear to be more complicated than the corresponding ones in equa-
tions (C2); however, the orthogonality relations needed for all regions of the transform
plane are given by equations (C9). That is, for s e S;, N Sg;, the proper orthogonality
relations are the first, third, sixth, and eighth equations of equations (C9) with Xg(z,s)
given by equation (C4). Note here that Xp(z,s) always appears in equations (C9) with
Re(z) < 0. It follows then from appendix A that for Re(z) <0, Xg(z,8) is a nonvanishing
analytic function of both z and s except for the branch cuts in the s-plane due to

vg1(s) and ypo(s).
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APPENDIX D
THE TWO-MEDIA FULL-RANGE EXPANSION FOR THIS PROBLEM

In this appendix, it is shown that application of the continuity condition (eq. (20))
results in a two-media full-range expansion of the type discussed in appendix C. For
x = a, one readily obtains from equations (31) and (20) upon using the explicit forms of

and ¥ given by equations (32), (39), (44), and (45) that

Ymes mp:

0=ay, Ebvoz(a,u,s) + w_,,oz(a,u,S)] b9(s)
1
+ go Ag (V) |¥g(,1,8) + Yg(_y)(a,u,s)| dv
1
+ I:aliwyol(avnu':s) 61(S) + SO Al:l:(_V) lably(a',u':s) dyjl
1
+ in(a':VOZJS) l11/1;02(3',’-‘!'35) 62(8) + S‘O in(a,v,s) ¢/2y(a>.u';s) dv
- Fli(_avy()l)s) EDyOl(a;u';S) x W_yol(a':u':sﬂ 61(5)
1
- S‘O F]_i(—a.,V,S) El/]_y(a,u:s) * Wl(—V)(a’u’Sil dv (Dl)

It was indicated in appendix C that according to Erdmann (ref. 15), the functions @, (u),

gp_voz(p,), ¢1,{n,8) 0=v=1) and ¢q, (u,5) (-1 =v=0) form a complete orthogonal
set of basis functions for the expansion of h(u) (-1=u =1) for se Sy;N Sg;. (See
eq. (C1).) However, equation (D1) also contains terms in which ¢q9,(1,s) (0= v =1)

and ¢q,(u,s) (-1 =v =0) appear. These continuum solutions must be replaced by
corresponding continuum solutions for the other media. One uses the relationship (C7)

to do this; that is,

- N

@9 ,(1 S)=E&qo (,8) + — &(v - u)| H(v)
2V T leqog TV Teqop i
~ (D2)
01,/(11,5) =k o0 (11,8) - =2 o(v - )| H(-1)
IR AL _(;20'2 2\ CZUZ i
J
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where

1 (v >0)
HQ) = (D3)
0 (v <0)

When explicit forms of the elementary solutions and equations (D2) and (D3)
are used in equation (D1), one obtains the two-media full-range expansion

) = [Frafarons) 2o e DY o, ) 6y(0

s+05)a/y,
Fag, e( 2) / 02 GD_VOZ(M) d9(s)

1 -
+ §O {E‘li(—a, V,s) & Ali(_yﬂ e (S+01)a/v

co0a [ —(s+02)a/v
T Fo.(a,v,8) + Ay (M)l e @1,(1,8) dv

0 - -
x g_l [g;g; Fy,(-a,-1,9) e (s+oq)a/v _ Ag,(-1) e (S+cz)a/ﬂ ©09,(11,5) dv (Dda)

where h(u) is given by

h(u) = 3 ;{01 H(u) [Faa(a,,8) + Ag, () _"(s+op)au

k

~-(s+01)a/u
+ 909 H('I“L) Fli(_a’;"l'l')S) € ( 1) /

* [in(a"’oz’s) + az% e_(swz)a/ 02 Py (1) D9(s)

02

. (s+01)a/ Y01

F F1,(-2,v91,9) 90_1,01(#) 61(s) (D4b)
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The orthogonality relations (egs. (C9)) can be used on the expansion (D4) to obtain equa-
tions which determine the remaining unknown coefficients implicitly. However, it is
convenient to introduce first the E,, coefficients given by equations (50). One then has,
after some algebraic manipulation, equations (51) to (48).
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APPENDIX E
CONTINUATION TO THE COMPLEX PLANE

In this appendix, the way in which equations (50) to (58) are extended to the complex
plane u -z with s considered a parameter is outlined. As shown in reference 21,
functions such as those introduced in equations (50) are extendable. The particular
grouping of terms in equations (51) to (58) indicates some integrals and residues which
go together.

The first functions to be considered are the F_, +(x,w,s) functions given by equa-
tions (46). In equations (55) to (58), these functions appear with Re(w) >0 so one con-
siders the functions L,.(x,v,s) given by equation (69). When the explicit expressions
of equations (46) and (47) are used, one can see that for £, i(xo, u) extendable u —z
without singularities in the finite z-plane, then Ly, ;(x,v,s) can be extended to
L,,.+(x,2,s) given by equations (67) and (68). As z — ve (0,1), it can be seen that the
limiting values of L., ,, namely Lm::' (x,v,s) and L., (x,,8), are identical. Thus,
L,,+ does not contain the branch cut of €,,(z,s) as one might be led to expect from
equation (67). There appear to be no other singularities of L., in the finite z-plane,
Re(z) >0 and Re(s) > 0. It follows from equation (67) that

e— (s+om)x/v0m

Lmj:(x’ VOm:S) = %CmomVOmQ;n (VOm:s) Fm:l:(x’VOm’S) (S € Sml) (El)

In order to extend the functions I, i(1/) to the complex z-plane, one needs the

identity
clclﬂg(v,s) Q9 (v,8) €909 Kk c10129(v,s) + c90911(7,s) (E2)
= +
czozﬂf(v,s) Q7 (v,8) €191  ©€101¢2% Q1+(V,S) 24 (v,s)

which can be verified directly. On using this identity, one finds that I, ,(v), given by
equations (55) and (57), can be written, respectively, as equations (65) and (66). The
restriction Re(s) > -0,j, on these equations comes from the fact that L,,; for both
m=1 and m=2 occur in each I, ,. More will be said about this restriction later.
The contours C' are given in figure 3. By letting z = yg9 in equation (65) and

z = Vpy in equation (66), it can be seen that
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Ins (V02,5) = J24 (Y02)
(E3)

I1£(%01:5) = I1+(Y01)

Thus, the inhomogeneous terms of equations (51) to (54) are seen to be extendable and
related as shown in equations (E3). For z —vp; in Ip; (eq. (65)) and z — vy in
I;. (eq. (66)), these functions might seem to be singular. However, upon examining the
residues it is seen that this is not the case. Thus, the I, ,(z,s) appear to be analytic
in the finite z-plane, Re(z) >0 and Re(s) > -0y ip-

In equation (51), one now lets v -z and, for Re(s) > -0, and Re(z) >0 in
the finite z-plane, finds that Eg,(z,s) is given by the inhomogeneous term I, .(2), a
term involving a9, if se& Sg; and an integral over Eg.(k,s) (0 =p =1). A singu-
larity occurs in the integrand when either szpf (u,s) or $£g9(u,s) vanishes and this
condition occurs for se Cg. However, for this case, it is seen that one obtains from
equations (51) and (52) that Ezi(voz,s) is related to ag,. It appearsthat Ey,(z,s) is
analytic in the finite z-plane, Re(z) >0, Re(s) > -0,,;; and can be written as equa-
tion (63). By following the same procedure with equation (52), one obtains an equation
which is easily seen to be equation (63) evaluated at z = Y095 that is, Eo i(voz,s) and
ag, are related as

' s+09)a /v
Ezi(voz,s) = %czozvozﬂz (VOZ’S) a9, e( 2) / 02 (s € SZi) (E4)

In a similar manner, from equations (53) and (54) with v — z and from using equa-
tion (E4), one obtains equation (64) and again it follows that El:l:(VO 1,s) and aj, are
related as

—(s+01)a/v01

E14(0158) = 5191701 (Po155) 214 © (se81) (E9)

It also appears that Eq,(z,s) is analytic in the finite z-plane, Re(z) >0 and
Re(s) > -0pip-

The solutions Y.,
shown in equations (70) to (73).

and "Dmpi can now be written in terms of the E_, as
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APPENDIX F
INVESTIGATION OF THE ASSOCIATED EIGENVALUE PROBLEM

In this appendix, the associated eigenvalue problem, that is, the problem for which
f(x,u) = 0, is considered. The inhomogeneous terms I, (given by egs. (65) to (67))
can be seen to be identically zero when f(x,u) is zero everywhere. Solutions for
Im+=0 are denoted with a bar, that is, ‘Zm 4+ The unknown expansion coefficients
for the associated eigenvalue problem E_ . are given by equations (63) and (64) with
Iﬁi =0. It is seen from such equations that fm ;+ can be determined only to within an
arbitrary factor independent of z andthat E;, depends on Ey,. Furthermore, the
original normal-mode expansion coefficients for the eigenvalue problem are given by
Eps(e,8) O=p =1, m=1,2), Eli(VOI’S) (s € Sli): and fzi(voz,s) (s € SZi)-
Therefore, one must examine solutions of such equations as a function of the transform
variable s for z — u with the contour C' collapsed onto the branch cut (0,1) due
to Q9(z',s), and for z = vy, when se Syj. This procedure is followed for all s in
some right-half s-plane and it is convenient to divide the plane into three regions:

S € Sgg, S € Sg;, and s e Cy.

When s e Sg,, S9(z',s) does not vanish within C' so that equation (63) with
Is; =0 can be written as

— 1 —
Eg.(u,s) = igo K(u,v) Eg,(v,s) dv (s € Sge, 0= s 1) (F1)

where

K(u.7) = k Q9(w,8)  Xg(-u,8) Xg(-v,8) v e-Z(s+02)a/v
2 Q1(,8) Q5 (v,s) Qg (1,8) (v + )

(O=pvs1, us= Y02) (F2)
When se Sg;, S9(z',s) vanishes inside C' but not on the real interval (0,1).

As C' is collapsedonto (0,1), a residue term appears so that equation (63) with

I, =0 takes the form

k  S9(%,8) Xg(-4,8) XO(—VOZ,S) N 2(S+02)a/1/02E ’ S)
2% 01059 @(02,5) (g * #) 2:{02

E-z:t(li,S) ==

1 —
iS. K(u,v) Eg,(v,s) dv (s € S;, 0<p< 1) (F3)
0
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for z =pu where K(u,v) is given by equation (F2). However, equation (63) with I5, =0
must also hold at z = vy and this requirement gives an additional constraint on solu-
tions of equation (F¥3), namely,

g (,s) XOZ(—VOZ,S) 6—2(s+o2)a/y02E -y
€909 Q1(,s) 21’0295'3(”02,5) 2:I:( 02 )

Ep4(v02,5) = #

1 _
+ go K(VOZ,Z/) Eg,(v,s) dv (s € SZi) (F4)

When s e Co, the curve separating Sg; and Sy, Q4 (v,s) Qg (v,s) vanishes for
some v on the interval (0,1); that is, vpg is real and lies on (0,1). By setting
Voo =7, one can put equation (63) with Iy, =0 in the form

1 k 9Qa(x,s) Xg(-1,s) Xg(-n,s) e—2(s+02)a/‘n -

E =+
2:55) = 25 565 B1(=,9) Q5(1,8) (n + 1) 2279
Qo(,s 1By, (v,8) Xn(-v,8) -2(s+09)afv
£y e P (7 Enaln9) Xolnss) -2(ss0y) /v
2 Q1(e,s) v=n Y0 Qg (v,s) Q9 (v,s) H

(s €Cy, 0=p,ms 1) (F5)

Note that this equation would be obtained from either equation (F1) or equation (F3) for
s -~ Cqy from se Sy, or se Syj, respectively.

For arbitrary complex values of s, the kernel K(u,») which appears in equa-
tions (F1) and (F3) is not symmetric since

*

K(i,v) # [K(v,m)] (Im(s) # 0) (F6)
where the asterisk denotes complex conjugation. Note, however, that when Im(s) =0,
the unknown functions fzi(p.,s) can be redefined so that a symmetric kernel is obtained.

Solutions of equations (F1) and (F3) depend on the behavior of K(u,v) generally through
the quantity B2 (s) given by

B2(s) = gol gol |K(/.L,V)|2 du dv (F7)
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To study Bz, one introduces the nondimensional parameters ¢, oR, op, and A given
by equation (118) with { =« +if. Note that @, B, o, op, and A are real whereas
ogr and A are nonnegative. In terms of these quantities, one has

2
{Ey(oR -1y - °D:| + BZ(UR - 1)2} Ea - D2+ Bz] lXO(—p.,S)I2 lXO(-V,S)Isz o-dAa/v

2. 2 Q5 (v,9)|2
4[(04+ch oR) +B] "%21(;25!

(F8)

IK("L’V) ‘2 N Qg (v,8

020‘2

)
)l v+ w?

©O=su,vsl)

2
To make estimates of the function IXO(-u,,s)l , one uses an integral representation
of the single-medium X-function given in reference 14, namely,

1 ioo Qm(z',s)_l dz!
- = —_— F
Xom(-1,8) = exp 5 S._ioo IOgelglm(oo,s)_lz' - (F9)

Upon letting z'=1iy andusing Q,(z',s) = Q,,(-z',8), one sees that equation (F9)
becomes

_ w (7 Flm(iy,s)—l dy
Xom(-11,8) = eXPér S‘O logg E?m(”,S)JyZ 12 (F10)

which is real for s real. Interms of the quantities of equation (118), one finds

N
2 2
2 2u @+ op - opey)|“ + B84 4
'XOI(—u,s)I =exp—#—§ logg [ D 'R 2] 5 Y 5
0 (a+0D—ch) + B2 Y+
(F11)
2 52
2 20 a-gy)|”"+p8° g4
[Xoa(-#.9)] ”Xp_w&g loge [ ]2 R
(@ -1)%+p" y“+pu J
where
g(y) =y tan~1 %, (F12)
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It follows from equation (F12) that 0 =g(y) =1 for 0 =y =« and that it is a monotonic
increasing function of y on this interval. Furthermore, since

2p 'Tz_dy_2=1 (F13)
TJo y*+u

the following bounds (perhaps rather loose) are obtained for Xom(-#,8) 2,

.
2. g2

2 as+ g

1= [Xnol-1, < | S FP7

[Ko2(-1,9)] G-102.

(F14)

(@ + O'D)z e
(¢ +op - oR)2 + 2

1= lXOl(—y.,s)lz =

for a> max(l, -op + GR), and

a2+32
(@ - 1)2 + g2

B2

2
R - =
( ) 1)2 5 = |X02( [.L,S) = max 1,

(F15)

(cz+ CTD)Z + ,32
(a+0D—oR)2+BZJ

& =X 2 1
(a +0p - °R)2 + 2 =| 01(-1,8)|° = max|1,

for a < max(l, -op + O'R) and B #0. Note that in the ¢-plane, the points ¢ =1 and
{ = -0p + oy are the right ends of the branch cuts of vy9 and Vo1, respectively, and
those cuts lie on the real {-axis. The left endsareat £ =0 and ¢ = -0, respectively.

25 (v,9)|2
The functions _C.?.TZ are easily found to be
+ 2
Qs (v,8) 2
2\ _ _ -1 T
———-——0202 = (a v tanh V) + (B + 5 )2 (F16)

It was pointed out in the text that the curve C,y (fig. 2) is given by

at = %g— tanh~1 %?- (F17)
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The parametric form of this equation is

|6t =2 ©0=v=s1)
2
(F18)
@' =vtanh~1 v (0svs=s1)
25 (v,9)|?

It is seen from equation (F16) that are the squares of the distance (in the

Co O
¢-plane) from the point («,B) to the pozin?;s (a'(v), ¥8'(v)), respectively, which lie on the
curve Cq. Since these functions appear in the denominator of IK([..L,V)I 2, the inte-

gral (F7) will not be bounded when « and B are related as in equation (F17). One
defines Dy ;n(2,8) as the minimum distance from the point (@,8) to the curve Cg for

0 = v £1; that is,

_ |Qz+(v,s)

minl IQZ_ (v,5)
| c2%

> | 209

Dpin(@,8) ©=sv=s1) (F19)

and Dpip(@,B8) #0 for (a,p) ¢ Cy. Therefore, from equations (F16) and (F19),

4
(¢2%) s 1 O=svs1) (F20)
|Q§(v,s)|2 lﬂz'(v,s)lz Dmir%(a,ﬁ)

Analytical bounds for this function are not as easy to determine. For =0,
- %
Qé" (v,s) = I:Qz (v,s):l and
€202 2

-1 lu) F21
eI a2g<a, (F21)

B=0

where g(%, V) has been investigated and tabulated by Case, De Hoffmann, and Placzek
(ref. 25). They show that %f’v)’ma.x occursat v=0 for a< 7r2/ 8 whereas for

a > 772/8 it occurs for v between 0 and 1. For « very large, they have

8max ~ 4a2/ 72. The present geometric interpretation (ref. 26) is consistent with all
these characteristics. The radius of curvature of the curve Cg given by equation (F17)
is 112/8 at (a',8') = (0,0). For «' verylarge, B' - 7/2; thus, the minimum squared
distance from (,0) to (a',8') approaches u2/4, in agreement with equation (F21)
and g ,ax 4012/712.
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Note that the exponential factor o-daAfy

in equation (F8) requires « >0 in
order for Bz(a,ﬁ) to be bounded since both v and A are nonnegative. On using
estimates F(14), (F15), and (F20), one obtains from equation (¥7) a bound for Bz(a,ﬁ)

which is denoted as Bma;‘(a,ﬁ):

’/ e—4(YA {E!(OR - 1) - UDJZ + ﬁz(UR - 1)2}(02 + BZ)
4Dy (,f) (o + op - op)? + 2
Bma.xz(a,ﬁ) = (Fzz)
pean [ [ e (om0 s 2]
1
4Dmié(a,ﬁ)1maxka S1)2 462 =
(ﬁ #0; 0 <a<max(l, -op + UR))

(a > max(1, -op + ch))

It can be seen that Bma_}? depends not onlyon « and B but also on the nondimen-
sional material parameters op and oR as well as the slab thickness parameter A.

The estimate (F22) for Bma;? is not bounded for the following regions in the s-plane:

Re(s) < -09(a < 0)
s e Cq (F23)
s € Branch cuts of vg1(s) U vpa(s)

These regions must be handled separately. Even for the general case, where s does
not belong to any of the regions (F23), it appears difficult to say whether the eigenvalue
problem has nontrivial solutions. One suspects that it has only trivial solutions for such
regions since that is the result which has been found for certain special cases by others.
Lehner and Wing (refs. 6 and 7) have shown this result for the bare slab, whereas Lehner
(ref. 8) and Hintz (ref. 9) have obtained this result for the slab surrounded by pure
absorbers. One shows that this result is also obtained for the special case A - =, that
is, a thick slab, as follows.

Since the slab-thickness parameter A appears only in the exponential term of
equation (F22), it is seen that Bma_,g(a,ﬁ) can be made as small as one likes as A -~ «
if s does not belong to any of the regions given in regions (F23). For |Bmax(oz,ﬁ)| <1,
the Neumann series solution of the inhomogeneous integral (eq. (F3)) converges to a
unique solution. (See ref. 27, for example.) Fredholm's alternative theorem (ref. 27)
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then guarantees that the corresponding homogeneous equation, namely, equation (F1), has
only the trivial solution. Thus, for se€ Sy, the eigenvalue problem has only the trivial
solution as A — , When s € Sg;, the unique Neumann series solution of equation (¥3)
must satisfy the additional constraint (eq. (F4)). By using the condition &, (voz,s) =0,
one obtains

o 2(s+o2)a/von _ E’(S) eie(s)]A (F24)

where

pz(s) _ E{e(voz) - 1:|2 + Imz(voz)
]ZRe(voz) + 1]2 + Im?2 (VOZ)

(F25)
-1 |_m(02) _1|_Im(vgp)
6(s) = tan |;Re (VOZ) = 1:[ - tan [Re VOZ) 3
Now since Re(voz)é 0, one has
A
E:(s)} 0 (Re(voz) # o) (F26)

Therefore, the Neumann series solution is seen to converge to zeroas A — « when
Re(voz) #0. Note that Re(voz) =0 is the branch cut of vyy(s) which is one of the
regions given by region (F23) which must be considered separately. When se C,,
Voo =M 0=n= 1 sothat p2(s) of equation (F25) becomes

(F27)

1A
[ury

2
2(g) = (121
p2(s) <n . 1)
and p=1 occursonlyat s=-09 (thatis, (@,8)=(0,0)). One uses equation (F27) in
equation (F5) and, on taking the limit A — <, finds that Ez 4(1,8) =0 for se Cy,
s # -09.

Summarizing the results then for A — « indicates that the eigenvalue problem
has only the trivial solution for Re(s) > -05 unless s belongs to either the branch cut
of vy1(s) or yya(s). Inorder to determine what happens on these cuts, one must write
equations (63) and (64) with I, =0 in terms of the X,,(-z,s) functions rather than in
terms of the XO(-z,s) function. This will be done in appendix G. When A is not
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large, others (refs. 6 to 9) have shown for special cases of the present problem that if
the eigenvalue problem has nontrivial discrete solutions, such conditions occur on the
real s-axis. For the bare slab, it was shown in references 12 and 13 that these solutions
lie on the branch cut of yp(s). In view of these results, it is assumed that the eigen-
value problem has nontrivial solutions for Re(s) > -09 only if s belongs to either the
branch cut of g1(s) or vgo(s).
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SOLUTION OF THE ASSOCIATED EIGENVALUE PROBLEM FOR s € Sg;

In this appendix, the solutions of equations (63) and (64) with I, =0 for s on
the branch cuts of vy,,(s) are examined. It is convenient to use coefficients related
to the original expansion coefficients A .(¥) and &, (the bar indicates that one is
considering the associated eigenvalue problem). Recall that the —m 4+ are related to
such coefficients by equations (50), (E4), and (E5). It was also noted in appendix F that
the coefficients can be determined only to within an arbitrary factor independent of v.

By following references 12 and 13, one introduces coefficients By, as

Ams(v) =33,Bp, (V)
(G1)

a1s = izztgli

The estimate Bmaxz(a,ﬁ) (eq. (¥22)) was not bounded on the branch cuts of vg,(s). In
that estimate the Xp(-z,s) function was used so that the behavior for s inside, on, and
outside the curve Cg could be seen. To investigate what happens on the branch cuts of
Vom(s), one should use the X, (z,s) functions (appendix A) which do not contain the
branch cuts of vy,,. Also, when v31(s) becomes pure imaginary (that is, on its branch
cut), one cannot include the contribution (the pole at z'= VOl) in the integral over the
contour C' of equation (64). Recall that the material properties ¢, and oy deter-
mine where on the real s-axis the branch cuts of vg,,(s) lie. The only restriction
which has been made is that ¢y <1 and this restriction alone does not specify the over-
lapping of the cuts. It does, however, guarantee that the branch cut of vOl(s) lies
entirely to the left of s =0.

Consider se€ Sgj N Sy; first. When the relationships (G1), (50), (E4), and (E5)
are used in equations (¥3) and (F4), one obtains after some algebra and use of the
X-identities of appendix A, equations for Bg,(u) and the additional constraint, namely,
equations (77) and (81). Recall that equations (¥3) and (F4) were obtained from equa-
tions (63) with I,, = 0. Equations for Elj:('“') and by, are obtained in a similar
manner from equation (64) with I;, =0 when the contour C' is collapsed on to the
interval (0,1) of the branch cut of Q9(z',s). These equations are given as equa-
tions (78) and (79). The normal-mode expansion of the solution of the associated eigen-
value problem is given in terms of the B, coefficients by equation (76). Note that
equation (81) is the exact eigenvalue condition since all material properties have been
assumed to be known. It determines the values of s, {Sn}, for which the eigenvalue

84



APPENDIX G — Continued

problem has nontrivial solutions. When s belongs to the branch cut of v,q, equa-
tion (81) takes on different values above and below the vy cut. Therefore, it is con-
cluded that the eigenvalue problem has only the trivial solution on the branch cut of vpq.
On that part of the branch cut of Vg9 which is not also a part of the gy cut, equa-
tions (77) to (81) require that the limiting values of the coefficients above and below the
vgg cut be related as

[Emi(“ﬂ+ = 4[Brna )
) (G2)

[Bl:t:r = i[gli-:]- (Re(v02> = Im(v()l) = O)

J

that is, where s is real and is given by max[—oz, -01(1 - cl)] <s< -02(1 - cz). It then
follows from equations (76) and (G2) that the limiting values of ¥,(x,u,s) for the same
region are given by equation (96). From the results of references 12 and 13 for the bare
slab, it is expected that the eigenvalue problem has nontrivial solutions only at isolated
points (Sn} which lie on the branch cut of vy9 but not on the branch cut of vyy.

In the limit c909a — = which was discussed in appendix F, one sees that equa-
tion (77) gives By (1) - 0 whereas equation (81), the eigenvalue condition, becomes

-(s+09)a/y s+09)a/y,
_Xp(vgp8) ¢ FT2Y02 xp(0p9.8) o 2)2/Y02
X1(-v02:5) Yo1* %02 X1(%02:5) o1 - Vo2

0

(020'23. -~ © and Re(V02> = Im(VO]_) = ) (G3)

Equation (G3) is the "thick-slab' eigenvalue condition and for the region of the s-plane
where it is valid, it can be seen that one obtains an even eigenvalue s, if

SH+09jafV
Xg(vp2,5) "2 02

=0 (G4a)
X1(Y02:8) Yo1 - Vo2
and an odd eigenvalue s, if
IS+ )a/voz
Xa(vp2,8) e W 2
e =0 CoUna — ») (G4b)
[X1(v02-5)  ¥o1 - Y02 (2022~ =)
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Note that equation (G3) has the same form as the zero-order approximation of the critical
condition given in reference 2, except that here one has both even and odd parity solu-
tions. Numerical solutions of the eigenvalue conditions are discussed in appendix J.

In the region of the s-plane, se S;, N Sy;, one is specifically interested in the
solution on the branch cut of Voz(s) which lies to the left of s = -07, that is, for s
real and -09 <s = -07. For such values of s, the solution (76) outside the slab is not
bounded as x — %, since

Vi) = o1yl e VT ©svs1) (G5)

In addition, the restriction Re(s) > -0,,;, on both inhomogeneous terms I, ., (see

eqgs. (65) and (66)) also indicates that one cannot deform the inversion contour to the left
of Re(s) = -0y in general. However, when one is looking for the solution inside the
slab, |x| =a, perhaps the inversion contour can be deformed to the left of Re(s) = -0y
for special values of material properties and/or initial data. For se Sgin S1¢e, €Xpan-
sion coefficients for the solution inside the slab are obtained as equations (82) and (83).
Note that equation (83) is exactly equation (81) with X1(z,s) replacing (Vol - z)Xl(z,s).
Recall from equation (A10) that these are the X-functions which are continuous as s — Cj.
Under the same replacement of Xg1(z,s) with (v01 - z)Xl(z,s), equation (82) reduces
to the equation from which equation (77) was obtained. Equation (83), which corresponds
to the eigenvalue condition equation (81), determines the pseudo-eigenvalues, that is, the
values of s, -09 <s < -01, where EZ i(x, K,s) has nontrivial solutions.
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APPENDIX H
FORM OF y,(x,1,5) ON THE BRANCH CUTS OF g ,(s)

In this appendix, the transformed solution ¥, (x,u,s) is put in a form where one
can see how it behaves on the branch cuts of vom(s). One expects that Y, contain the
branch cut of vg1(s) since only one of the two discrete modes appears for |x[ > a,

Such branch cuts appeared in the half-space problems solved in references 14 to 16. One
also expects that the branch cut of Voz(s) does not appear in Y, but instead one should
find poles at s = sy, the places where the associated eigenvalue problem has nontrivial
solutions. This condition was found for the bare-slab problem analyzed in references 6,
7, 12, and 13.

It is not obvious from the equations which determine the expansion coefficients
implicitly how one should group the terms to show what is expected. Consider first
V9. (%,1,8). From equations (32) and (44),

Wzi(X,M,S) = aziEDVOZ(X;IJUS) Y (Xnu'is):l

Y02

1
+ § 80,00 [antons) = () en,)] av
+ in(x,voz,s) t,bvoz(x,p.,s) + FZ:}:(—X?VOZ’S) w_yoz(x,u.,s)

1
+ S‘O EFZ:I:(X’V’S) IIIZV(X;U',S) = in(—X,V,S) IPZ(_I;)(X:I“L,S):I dv (Hl)

Note that this equation can be obtained from equations (70) and (72). It is readily shown
from the definition of the F,,, functions (egs. (46)) and the properties of the C,,+
(eqs. (B11)) that

Fa4(X,702,8) = Fo4(a,v02,8) * Fo.(-%,-12,8)
(H2)

in(x,-voz,s) = in(a,—voz,s) + in(-x, Voz,S)

It follows from equations (H2) that the two coefficients in equation (H1) can be written as
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in(x,voz,s) = —;— I:in(x,voz,s) x Fy, (—x,—vOz,s):J + %in(a, Voz,S)

(H3)
1 8 1
+Fg, (-%, V02’5> =5 Ein(X,—VOz,S) + in(—x, Voz,s):] + Ein(a,Voz,S)
where equation (B12) has been used to replace Fq i(a,—voz,s). Equation (H1) then
becomes
_ 1
Yo, (X,1,8) = I:azi +3 in(a, V02,S)] EDVOZ(x,u.,s) £ Y VOZ(X’U"S):I
1
o § 8020 [, 6,9 = vy 0,8)]
i
5 in(x, Z/OZ,S) + in(—x,-voz,sil :,Dyoz(x,u,s)
1 r—
+5 _in(x,-voz,s) + in(-x, VOZ’S)] v,b_yoz(x,u,,s)
1
+ XO I:in(x, v,8) ¥9,(X,1,8) + in(—x,v,s) z,lxz(_y)(x,u,s)] dv (H4)

When s e Branch cut of ypg(s), then gy = i|V02| for Im(s) =0 and vyy = —i|V02|
for Im(s) = 0", Therefore, on going from below to above the branch cut of vy, it is
evident that the third and fourth terms in the right-hand side of equation (H4) simply

interchange whereas those containing Fy,(x,7,s) and Fo, (-x,v,s) are unaffected
since these functions do not depend on vpy. The coefficient of [az st -;—Fz i(a, VOZ,S)]

however changes sign for odd-parity solutions and the behavior of A, i(V) is not clear
yet. By comparing equation (H4) with equation (76) for |x| <a, one suspects that

E.z + %Fz jC(a.,yoz,s)] is the coefficient which excites the associated eigensolution
Ei(x, K,s). This is the information needed to group terms in the implicit equations for
the expansion coefficients.

Now examine the equations which determine the expansion coefficients. From
equation (52) upon using the X-identities, the definition of the h,, functions (eqs. (80)),
and the relationship between the E| , and the original expansion coefficients, the fol-
lowing equation is obtained:
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ha(vo2) hz('Voz)J

1 )
0=lag, +=Fg_(a,vg9,s
|:2:t 2 2i< 02 ) E/Ol + Voz Vol - VOZ

1 hy(vp2) _ ha(-vop §
+ Ein(a,Voz,S)[V()l T Vo T Y01 - Y02 + @2 (1) + in(a K, :, hz(#)m

+ VY 2vp1
S‘ Fy,(-2,0,8) hl(u)—‘)l2 di + Fy,(-2,v01,9) hl(v()l)—z-o—z (H5)
u - v Vol - v
02 01 - Y02

By following the same procedure with equation (51), one can obtain after making use of

equation (H5):

Ag.(¥) = C9O: 2F1:|:( a,v,s) e(cl_oz)a/y

Q9( 2 - ( h ;
L ST R e

9 21(,s) VO . N2(V)

1 ha(vo2) _ hal-vgp 1 dg
+ §F2:t(a7V02:S)[V_S VO.?): F7C VOZ) + S‘O Azi(ﬂ-) + in(a,ﬂ,s) h2(lJ‘) m

2 2
- B2 205, (1,8)
§ Py (ca,m,8) by () 2oy 2 (s6)
Y02 ~ H

From equation (54), there is obtained:

*1(-v01) 214 = [azi + 3 Fau(a, Voz,S)] Elz(”oz) £ hz('Vozﬂ
+ 5 F2s(2:702,5) |h2(v02) 7 hy(-702)]
(VOé.?‘ - Vo]_ g Ezi(u) + in(a L, S:l hz(;_L)IJ‘z—_2
~ Yot
Y 2'” § Fi.(-a,u,8) h (u)——————
( 02 1+ 1 2 Voz

(H7)

+ F14(-2,v01,5) E‘l('Vol) * h1(V01ﬂ
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Finally, from equation (53),

A0 F A a5u) L 1DY”

92(00 s) hy 1/) hg Voz) hz( Vozl
= |:2 Ql(°° s) N{ () [Zi ) in 2 VOZ’S):”:I/ - V02 V+ Voo

+%F2i(a”’02’s) lihz(voz) - V(Q}

U-Voz V+7J02

1 2¢4,(K,8)
+ SO E’lzi(u) + in(a,u.,Si] hZ(U-)—ETGI—V— du

2_ 2
Yo1r ~ * du

_‘LLZLL+V

T l:FIi(‘a ,8) - 1 FZ:I:(a' v,s) e(UI—GZ)a/IiI (H8)

S‘ﬁgaMQMW)

By following a procedure similar to that of reference 13, the expansion coefficients
Am+(n) and ay, can be written in the form:

Ama(n) = [aZi + %FZi(a: VOZ’Sil A;ni:(“) + B (u)

(H9)
1 '
ayy = [flzi +5F 2¢(a>Voz:Sﬂ 214 + bp4(K)
When equations (H9) are used in equations (H6) to (H8), it follows that
A1) =B, (1)
(H10)
A1y = Pyy

where Em ﬂ:(p.) and 51 4 are the expansion coefficients of the associated eigenvalue
problem given by equations (77) to (79). The coefficients By, (k) and by, are found
to be given by equations (85) to (87). The coefficient ag, is obtained from equation (H5)
4as
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1 ho(vg2) . ha(-vo2) | (lo dp
[}Zi * EFZ:t(a"VOZ’Si, E/Ol + Vg9 = Vo1 -~ Y02 + S‘O BZ:I:(H’) hz(“) B+ Vg1

ho(, ho(-v 1 d
= -3 F3.(2,702:9) [v on) ol @} ) go [Ba:lu) + Fas(a,is,8) ba(u) “+_#”01

01+ Y02 " Y01 - Y02

L+ v 2y,
2—0—1— du ¥ Fli(—a,vol,s) hl(”01) ;—2—0—1—2 (H11)

2
01 ~ Y02

1
?S Fy4+(-a,u,s) hy (1)
0 K- Yoo

It can be seen from equation (81) that the coefficient of I:azi + %in(a, VOZ,SE] in equa-

tion (H11) is the eigenvalue condition, and it will be zero at the places where the associ-
ated eigenvalue problem has nontrivial solutions. Equation (H11) is the same as equa-
tion (88). The solutions ¥, ,(x,1,5) cannow be written as equations (91) and (92).
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BEHAVIOR OF y,(x,it,s) ON INVERSION CONTOURS

In this appendix, several points concerning the behavior of ¥, (x,u,s) on the inte-
gration contour of the inverse Laplace transformation and some parts of related deformed
contours are discussed. First, one looks at the behavior of ¥, (x,1,s) as |s|— < with
Re(s) = v, a large finite positive number. It will be seen that ¥ (x,u,s) is not neces-
sarily 0<§ . Such parts of ¥, (x,u,s) are inverted separately and the resulting solutions
are shown to satisfy the uncollided transport equation. Then one considers how . (x,u,s)
minus the uncollided term ¥, (x,u,8) can be deformed around the poles and the branch

cut of ¥ "

It is of interest to examine the behavior of i, on the contour Re(s) =y as
|s| ~ <, where vy is finite (see fig. 4). For such cases, se S1oN Sy and the solu-
tions ¥, can be seen from equations (32), (39), (44), and (45) to be

1 -(s+09)X/V
%l/zi(X,ﬂ,s) =S‘0 Eq-zi(y) + in(xyvysz] € ( i 2)X/ @21}(#’5) dv

1 S+0,\x/v
+ go E&Zi(v) + in(-x,v,s)] e( 2) / gozy(—p.,s) dv (11)

and, for x> a,
1 ~ -(s+01)x/v
wli(xsuys) = iS\O I:A*]_i(_v) - Fi(—a,V,S) + Fli("x,‘V,S):l e (ply(u';s) dv

1 S+0 v
+ S;) F1.(-x,7,s) e( l)x/ 01(-u,8) dv (12)

with an equation similar to equation (I2) for x < -a. One sees then that the coeffi-
cients Aj.(-v), Ag,(v), andthe F,,, functions are needed. The expansion coeffi-
cients are given implicitly in terms of the F,,, as

92



APPENDIX I — Continued

iy (1,s) e—(s+02) a./u

A2:() = 50
(s+02)a/p.
K Qg(oo s) LLXO( u,s) e (S+02)a v
" S3% 0y(=,9) Na () § B2+ (1) Xol-v,5) € / oy, (-1,8) v (13)
and
) 5+071 a//.L ( ) /
iy a(n,s) € c101 Na(p) -\92-0g)a/u
A, (-p) = A
1+(-H) Ny (u) * 09 Ny (1) 9+ (1)

s+01 a4 (s+02) /V
i ne il f 22T L 2 P9, (1,8) v (14)

XO( M, S) N]_(II) 020'2

where the I,,(u,s) are given by

S+0'1) a/u

I, (u,s) = 0101# Ny(n) Fp.(-a,1,8) e
Qo(,s) 1 - s+0 av
_k 2
* 2203 1(=,5) Xo(-#,8) So Fo.(a,v,8) e )7/ Xo(-v,8) @9, (-k,8) dv
15y, (- ) (s+01>a/v
k 1+(-a,v,8) e
* 101 Xo(-u, S Xo(-7,5) @1, (,8) dv (15)
and
(w) s+01)a/lk ¢ S+09)a fu
I1e(i,s) =% 1 Fi.(-a,u,s) e (sen?/ * czlogu No(u) Fou(a,u,s) e (5+2) /
1 s+0 )a/
__k 1
¥ €% Xo(-1,8) go Faula,vs) e Xo(-v,8) @9, (,8) v
S+0'1
__k 21 (,s) 1 1 Fy,(-a,v,8) e( ) / o (i) dv -
€191 Qz(°°,S) Xo(-M,S) 0 Xo(-v,s) 1 ™

93



APPENDIX I — Continued

The behavior of various functions which appear in equations (I1) to (I6) as |s| — o,
Re(s) =y is

\Qm(Z,S), Am(V,S), k — O(S)
XO(Z:S) - O(l)
and for 0= p,v=1,

(pm V(I‘Ls S) - O(S)
(I

Gﬂmy(‘U«,S) - 0(1)

The F, , {functions appear with an exponential factor and the combined behavior in the

same limit is

Fm:t(X,V,S) e_(s+0m)X/V - S+o‘n]) X XO/ l: XO’ l)]dxo

v(s+0m) g
1
~ off) (18)
On using equations (I7) and (I8) in equations (I5) and (I6), one finds that

Ko, (1,8)

(S+O'1) a/u,
No(i)

- Fli(—a.u,s) e

- o@ (19)

and

Iy, (u,s) - s+01) a/u. —(s+02)a/u

+ Fg,(a,u,s) e

- FFy,(-a,u,s) e
- 0(1) (110)
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The coefficient Ag, (i) is obtained from the integral equation (I3). Since the kernel of
this equation is also O Sh the first term of the Neumann series solution will give the
behavior of As, (1) as [s| — . It follows then from equations (I3) and (I9) that

Ags(k) ~ Fy,(-a,p,8) e_(az-al)a/ ¢

- o(l) (111)

S

Using equations (I10) and (I11) in equation (I4) yields

-(oz—ol)a/u

EAI:&('“') + Fli(—a,u,sﬂ - +Fy.(a,u,s) e

- o(%) (112)

Equations (I11) to (I12) are used in equations (I1) and (I2) to get

-2 -
+ Fli(_a,‘-L,S) € (02 ol)a/u

ey e O Ezi(x,u,s) crame e 2 a/”] (1 >0)

Wzi(X,U-,S) -
:I:(S + 02) e (S+02)X/u E‘zi(—x,—u,s) + Fli(—a,—u.,s) e(oz Ol)éyuz] (L <0)
(113)
and
( (—s+01)x/u
:i:(s + 01) e Fy(%,-1,8) - Fy (-a,-p,8)
-{0o -0 -2(09-0
Y1e(x,u,8) = {F Fos(a,u,s) e (C2-or)afk + Fy.(-a,u,s) e ( l)a/“] (n > 0)
+(s + o) o Fq4(-%,-11,8) (1 <0)
; (114)

when x >a. For x<-a, ¥q, hasa similar form. Upon using equation (I8) for the
F,,+ functions, one finds that equations (I13) and (I14) can be written as equations (98) to
(101) where the symmetry properties of f;,,(x,it) have been used. It can be seen from
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equations (98) to (101) that Y+, 1,8) is not necessarily O@) In fact, if fmi(xo,u)
contains é(x - xo), then y,(x,u,s) is O(1) as |s| — =, Re(s) =y. The parts of
Y, (x,1,s) which are not O(E) can be inverted by inspection after a change of variables

is made.

For x>a, p>0,and all s, ¥, ,(x,u,s) is definedas

—(s+01) (x -xo)/u

Vsl =L
ue(%,,8) = 7 L e f12(%0, 1)/

fzi(xo,p,) dx)

+

e—(crz—Ug(a—X)/“ ga e—(s+02)(x-x0)/u

-2

£1.(%0,1) dxg (115)

LOI o ol

m

which gives the parts of equation (100) which are not O(—Sl—) for |[s| = «, Re(s) =v. Now
the change of variables

X - Xg = ut (116)

where tZ0 since x 2 Xp and >0 is made. Equation (I15) then becomes

fl:!:(x - LLt, [.L) dt

S\(x-a,) /p. - (s+01)t
e
0

"pui(xy K, S) =

. §(x+a)/u. e-(s+02)t e_(gz-cl)(a~x)/u for(x - ut, ) dt

(x-a)/u

- ~(09-01)2
e (S+Gl)t e (02 01) a/u f1.(x-pt, p) dt Iim

¥ g x+a) /i

which is easily seen to be equation (103) with ¥, +(,u,t) given by equation (106). For
p <0,
X0 -X~= |Lth (118)

is used. It is seen then that the results given as equations (103) to (107) follow.

96



APPENDIX I — Continued

Another point to be discussed in this appendix is the contribution to equation (114)
from the contour C, (see fig. 4) around the right-hand end of the branch cut of vy1(s)
as the radius p goes to zero. This branch point is located at s = -0y (1 - 01); thus,

S + 01(1 - Cl) = pel? (119)

Here 1/01(5)-—00 as p -0 as

L 2 €191 1
01 p~0 3 pel?®

(-m <o <m (I20)

The branch cut has already been picked so that vyy(s) is real when s is real and
greater than -01(1 - cl). The integral

Lg st =Lgﬂ [ st] ig
51 Cpyb:b(x,u,S)e ds 5 _ﬂpwi(x,u,S)e e’ do (121)

with s given by equation (I19), is zero in the limit p - 0 if
Li s} =0 122
Lim [0y, ,5)] (122)

independent of ¢. As pointed out in the text, the point s = -0 (1 - cl) may happen to
satisfy the eigenvalue condition (eq. (81)). One assumes for the moment that it does not
and shows later what changes are required if it does. The function q(w,s) -0 as
p—-0 as

Qq(,8) — pel?
1(=,s) oo Pe (123)
so that
C10
vy £ R (=) = 131
s= -01(1 - cl) (124)

97



APPENDIX I — Continued

At this branch point s € S;; N Sg; so one needs to show the behavior of many functions
given in the text as p — 0. This behavior can be given in terms of the behavior of vyq
and £q(«,s). In the relationships which follow, quantities which are functions of s will
be given as O(v01), O(l/v()l), O(Ql), O(1), etc., as s —~ -0y (1 - Cl)- For example,

Qy(%,s) vy ~ Finite — O(1) (27)
where the given equation number is that from which the relationship can be seen.

Xml-1,8) - O(1) )

Xm (il/oz,s) - 0(1) (ABa)

Xm(:tV()l,S) - O(l/v()l))
k ~ O(1) (C7)

N
hg(w) ~ O(1) (w=i1/02 and ,u.(Oéuél))

N (u) — O(1)

(80)
hi(w) ~ O(®1)
hl(;tz/Ol) - 0(1/1/01) )
Bo.(i) ~ O1) (17
brs ~ O(vp1) (79)
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Bi.(-1) ~ O(1)

Ezi(X,H,S) - 0(1)

Eli(x’ I“L;S) - O(VO]_)

ij:(X: M, S) g O(l)

FZi(X’iVOZ:S) ~ 0O(1)

Fyy(x,2vp1,8) ~ O(1/vp1)
J

By, (1) — O(1)

Bl:i:(_y) - 0(1)

'BZ:L- - 0(1)

f"i(—a,v()l,s) - O(l/v()l)

fi(—a, v,s) -~ O(1)

(78)

(76)

(46)

(85)

(86)

(89)

(90)

(46)
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[loli - ﬁi(—a,vol,sﬂ ~ O(vp1) (87)
l:azi +%F2i(a,voz,si| ~ o) (88)
Yo (5y12,8) ~ O() (91)
¥1500,8) ~ O(vpg) (92)

From these last two relationships and equation (124), it follows that
PV (x,1k,8) ~ p O(1) (125)

so that equation (122) is satisfied. Therefore, there is no contribution from the inte-
gral (I121) for the case when s = —(71(1 - 01) does not satisfy the eigenvalue condition (81).

If the point s = -01(1 - Cl) happens to satisfy the eigenvalue condition, the denomi-

nator of l}zi + %FZ i(a, Voz,sﬂ which is equivalent to the eigenvalue condition (81) van-

ishes. It can be seen from equation (88) that the limiting form of this condition at the
branch point is «y, =0 and additional discussion about this condition is given in
appendixes J and K. If one considers, for such cases, the function

%;(X,IL,S) - [aZi + %in(a, VOZ:S>:] Ei(X,#,S) (126)

instead of ¥, (x,u,s) as the integrand of the integral (I21), it follows that in the limit
p — 0, the contribution from such an integral vanishes. The part which has been sub-
tracted from ¥,(x,u,s) in function (I126) is considered separately and would appear to

have a pole because of the zero in the denominator of l:az s+ %Fz j:(a., Voz,sil. Its contri-

bution therefore does not vanish in the limit p — 0; in fact, its contribution looks like a
discrete residue term. However, the point is not isolated {remember that this is the
branch point of vy at s = —01(1 - Cl)) so it should be understood that its contribution
is included in the branch-cut integral term of equation (124). The numerical results
indicate that such points occur.
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APPENDIX J
EQUATIONS AND PROCEDURES FOR COMPUTATION OF EIGENVALUES

The equations from which the time eigenvalues {Sn} are determined for
s € 813N S9; are equations (77) and (81). When s € S1g N Sy, the corresponding equa-
tions are equations (82) and (83) and they determine what has been called the pseudo-
eigenvalues. These equations are solved numerically by using the procedure of refer-
ences 12 and 13. As stated previously, these equations can be written in terms of the
nondimensional quantities introduced in equations (118). By making the substitution

111
B, () = 22 B2l (03,8 "\ (%) o)
+ g (Vol + ,LL)VOZ \Ql(°° S)

it follows that equation (77) can be written for ¢ real and ma.x(-cD+ OR, 0) <t<1
(that is, on that part of the branch cut of vg9 which is not also part of the branch cut

of v01)as
Hes *|Vogler | 1
B = -g(u) J2
) = g9 T f B,() 53 52)
where
Q (V C)[E{ (_IJ' t) 2 _ —ZCA/[.L ‘uz + v 2
o) = 2102 8)ZaC 8" pt - ) e | Vo2
A0 F1Cm0] 0F 0 25,0 (1 + vpq)?
c505
(33)
g = - 1(v02:) 1m |Ka(voa,t) &o2/702
| (=0 ReXq(voa,¢) vo1 - ¥o2
y
Now one defines AC 5 2as
Apy=-28, F g B, (v) dv (J4)

which is the eigenvalue condition (eq. (81)) if A§ L =0.
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Equations (J2) are reduced to two sets () of N equations inthe N unknowns
B_,_(y.-l) and B_(y.-l) where i=1,...N (see, for example, ref. 28) given by

N
B ‘;‘Lig:t £Val8r 1 N o Ba(Mj
P)” -g(ui)L uf + I”02|2+ E i=1 Ry o

where Rj are the weighting functions for the numerical integration scheme which is
used. Equation (J4) is written as

N
Atﬂ: =-2g, F Z RjBi(u]-) (J6)
j=1

Since a search must be made for values of ¢ for which ACi = 0, one must be able to

compute all quantities which appear in equations (J3) for any value of ¢ in the range
given by equation (120)). These quantities are computed as follows:

QI(VOZ:C) _ ¢ +0p-¢or

@7
QI(OOJC) c + 0-]D - GR
2,0 23 (1,0 [ 4 1+p : i
e

The functions vg,, are determined by Qm(VOm,C) =0 and they are computed numeri-
cally by using the Newton-Raphson iteration (ref. 28) on the nonlinear equations

-1 1 _
IVOZI tan lVOZI = (J9)
and
+ &
voy tanh1 7%—1 - Co D (310)
R

The X-functions are computed from equation (A8a); namely,
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1 lﬂ*(v o)
1 m\”> dv
X (2,8) = T P71 S;) logg ) -(V,CJV — J11)

For ¢ and z real where z =-u, 0 =g =1, one has from equation (J11) that

X8 ficl s
Xy (-m,g)  F ESO [pa(e.) - o1 (80w 0p, ) 55 (712)

where

69(t,v) = tan~! <§ mv/2 )

~ vtanh™1 p
(J13)
OpmV/2
_ R/
61(§’,GR,0D,V) =tan 1 3 >
£+ op - OgV tanh™ v
For . o X5 (v02:%)
¢ real and z = vy, one calculates the real and imaginary parts of as
X1(v02¢
~ N
X9y I‘
Re X2 02:8)| _Ti/a o 12
X (v02:€)|
(J14)
Im 2 (Voz,Cﬂ = erl/ﬂ sin 2
X1 (v02:8))| )
where
1 N
I‘l =S1 EZ(C’V) - GI(C,O'R,O'D,V)JZV—CIVZ
0 vé + |v02|
(J15)
1
Ty = IZ/Ozl S‘O [Qz(c,V) - 91(§,O'R,O’D,V):I—————ZIV I
02
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Integrals in equations (J12) and (J15) are computed as

1 M
go [QZ(C,V) - Gl(i;,oR,oD,Vﬂ f(v) dv = izl R, E?z({',z/-l) - GI(C,UR,GD,Viﬂ f(z/i) (J16)

where R; are again the weighting functions for the numerical integration scheme.

In all numerical integrations, Gauss' method (ref. 28) was used. For integrations
in equations (J5) and (J6), the interval (0,1) was split into four intervals

(0,1) = (0,0.05) + (0.05,0.1) + (0.1,0.9) + (0.9, 1.0) (J17)

and a 10-point Gaussian formula was used in each subinterval. For integrations in
equations (J12) and (J15), the interval (0,1) was divided as

(0,1) = (0,0.1) + (0.1, 0.9) + (0.9, 0.99) + (0.99,0.999) + (0.999, 1.0) (718)

and in each of these subintervals a 10-point Gaussian formula was also used. The sub-
division (J18) is the same as that used by Kowalska (ref. 29) and the X-functions calcu-
lated here agree with those she gives to all figures which she quotes except for the real
and imaginary parts of Xm(VOZ:C)- She apparently used Iy instead of T/ in equa-
tions (J14) to obtain the numerical values for the real and imaginary parts given in part IT
of reference 29. Since her later published critical-slab results (ref. 24) agree with those
of Mitsis (ref. 22) for a bare slab, it is expected that this oversight was corrected.

Conditions (82) and (83) which determine the pseudo-eigenvalues for se¢ Sqo N Sg;
lead to very similar equations which will not be written down. In this region, the real
s-axis corresponds to 0 ={ = -op and such equations need be considered only if
—O'D > 0.

The procedure used to calculate the eigenvalues {, is as follows. For fixed
values of A, oR, and op, one selects a number of ¢ values in the interval given by
equation (120). For each of these values, one obtains |V02| and vy from equa-
tions (J9) and (J10) by iteration (Newton-Raphson). Equations (J13) are evaluated at each
X9 'I-Lj,C)

of the 50 Gaussian integration points v; (0 < v; <1). Next, the
1 1 Xl("ﬂ],§>

are
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calculated for each of the 40 Gaussian integration points, M (0 <pg< 1) by using
X2(v02:%
X1(%02:%)
puted in the same way from equations (J14) to (J16). Now g(uj) can be computed from
equation (J3) at each of the 40 points i and all the coefficients in the two sets (&) of
N equations in the N unknowns B +(“‘j) and B_gu,j (egs. (J5)) can be evaluated.
These two sets of simultaneous equations are solved numerically for B ﬂ:(“‘j) which are
then used to compute A€ , from equation (J6) at the selected values of ¢. In this way,
one locates the zeros of A,; + approximately. A new set of ¢ values, located about
each approximate ¢, is selected and the process is repeated. For the present compu-
tations, the {,, were located to three figures. Discussion of the computed results is
given in the text. The calculations were done on a Control Data 6600 computer system
at the Langley Research Center.

equation (J16) in equation (J19). The real and imaginary parts of are com-

In appendix G, the thick-slab eigenvalue condition was given as equation (G4). Note
that g, quantities given by equations (J3) are, within a factor, exactly the quantities
needed in equation (G4). Therefore, the thick-slab approximation eigenvalues are
obtained from

g, =0 (J19)

as would be expected from equation (J4).

The bare-slab eigenvalues are obtained when oR =0 and it is easily shown that
in this case, equations (J5) and (J6) no longer depend on opy; that is, for oR =0, these
equations do not contain op.

It was noted in the text and in appendix I that the branch point of vg51 located at
s =-01 (1 - Cl) may happen to satisfy the eigenvalue condition which can be seen from
equation (88) to be

when vg7 — «. This point corresponds to { = -op + 0y and it can be shown that equa-
tion (J20) then determines values of ¢ = ¢, which depend on neither oy nor og; that
is, if one uses ¢ = -op + og to eliminate op from the condition (J20), o drops

out of the equations. Equation (J20) determines the values of £ at which eigenvalues
disappear into the right end of the branch cut of vyy. Also note that the limiting form of
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APPENDIX J - Concluded

the pseudo-eigenvalue condition for s = -0q, which corresponds to ¢ = -op, determines
the values of ¢ where the pseudo-eigenvalues disappear into the left end of the branch
cut of 1. Such points, as well as those given by equation (J20), are labeled with an
asterisk in figures 7 and 9 to 11.
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APPENDIX K
REMARKS ON EIGENVALUE—BRANCH-POINT COINCIDENCE

In this appendix, a few remarks concerning the situation when the eigenvalues (or
pseudo-eigenvalues) disappear into the branch cut of Vg1 are made. This situation is
somewhat analogous to that encountered by Hintz (ref. 9) for the slab surrounded by pure
absorbers. He could not say whether a bare-slab eigenvalue (which does not depend on
O’D) that happened to coincide with -op belonged to the point spectrum or the continuous
spectrum for his problem. In the present problem, the eigenvalues coincide with a
branch point as they disappear into the branch cut of vy1. A numerical study of the
branch-cut integral in equation (124) has not been made nor has the eigenvalue condition
on another Riemann sheet been investigated. It is suspected that there is no drastic
change in the shape of the solution given by equation (124) when an eigenvalue disappears
into the branch cut of vy and such studies would resolve this point. It was pointed out
in appendix J that the condition (J20), which determines whether the point s = -01(1 - cl),

(g = -0p + GR) is a zero of the denominator of l:azﬂ: + %Fz i(a, Voz,s)il given by equa-

tion (88), depends neither on op nor o explicitly. In appendix I, it was indicated
that the contribution from such points should be included in the branch-cut integral since
it arises from the integration around the branch point. One understands then that such a
contribution is included in equation (124) if s = —01(1 - Cl) happens to satisfy equa-
tion (J20). How such zeros of equation (J20) behave or appear in the solution after
passing through the branch point as the material properties are varied has not been
studied here.

If one considered the problem of a finite slab with symmetric reflectors of finite
thickness, then what is happening at the places where the eigenvalues coincide with
Vg1 = © might be deduced. In such a problem, the solution probably does not contain
the branch cut of vg1, but instead has discrete eigenvalues along it. Even though there
is another parameter in the problem, the reflector thickness, one might be able to carry
out a numerical study of all the eigenvalues.
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